Math, asked by pjay7746, 10 months ago


Find the zeros of the quadratic polynomial x2 + 7x + 10, and verify the relation
between the zeros and its coefficients.​

Answers

Answered by kanushasharma06
2

Answer:

Given Equation- x^2+7x+10

By Splitting the middle term

x^2+7x+10

=x^2+5x+2x+10

=x(x+5)+2(x+5)

=(x+5)(x+2)

.

.

.

.

Therefore, the zeros of the polynomial are(-5)(-2)

Coefficient=7

The relation is

5+2=7

.

.

Thank you

Hope this helped you

Answered by atharva180805
1

Answer:

zeroes are -2 and -5

Step-by-step explanation:

let us assume p(x)= x2 + 7x + 10

by splitting the middle term

x2+2x+5x+10

x(x+2)+5(x+2)

(x+2)(x+5)

therefore zeroes are -2 and -5

here a=1

        b=7

        c=10

sum of zeroes= -b/a                                                    sum of zeroes=-2+(-5)

                          -7/1                                                                               -7

                                      L.H.S= R.H.S

Product of zeroes=c/a                                                product of zeroes=-2*-5

                               10/1                                                                               10

Hope it help

PLZ BRAINLIEST

Similar questions
Math, 4 months ago