Math, asked by haaris643, 2 months ago

find the zeros of the quadratic polynomials 6xsquare -3 - 7x verify relationship between zeros and coefficiants​

Answers

Answered by Anonymous
36

Answer:

\mathtt{SOLUTION:-}

 \mathtt \purple{ {6x}^{2} - 3 - 7x = 0 }

 \mathtt \purple{ {6x}^{2} - 7x - 3 = 0 }

 \mathtt \purple{ {6x}^{2} + 2x - 9x - 3 = 0 }

 \mathtt \purple{2x( {3x} - 1) - 3(3x - 1) = 0 }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \mathtt \purple{(2x  -  3) = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (3x - 1) = 0}

 \mathtt \purple{2x = 0  + 3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 3x = 0 + 1}

 \mathtt \purple{x = \frac{  3}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  x =  \frac{1}{3} }

 \mathtt \purple{ \alpha  =  \frac{  3}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \beta  =  \frac{1}{3} }

\mathtt{SUM  \: OF \:  ZEROS}

 \mathtt \purple{ \alpha  +  \beta =  \frac{ - b}{a} }

 \mathtt \purple{ \frac{  3}{2}  +  \frac{1}{3}  =   \frac{ -( - 7)}{6} }

 \mathtt \purple{ \frac{  9 + 2}{6 }  =  \frac{  7}{6} }

 \mathtt \purple{ \frac{  7}{6}  =  \frac{  7}{6} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\mathtt{PRODUCT  \: OF \:  ZEROS}

 \mathtt \purple{ \alpha  \beta  =  \frac{c}{a} }

 \mathtt \purple{ \frac{ - 3}{2} \times  \frac{1}{3}  =  \frac{ - 3}{6}  }

\mathtt \purple{ \frac{ - 3}{6} =  \frac{ - 3}{6}  }

Similar questions