Find theequation of the straight line passing through (-3,10)
and sum of their intercepts is 8.
Answers
Answer:
Point: ( -3, 10 )
Sum of Intercepts: 8
Let the intercepts be denoted as 'a' ad 'b'
⇒ a + b = 8
According to Point Intercept Form,
⇒ x/a + y/b = 1
⇒ -3/x + 10/b = 1
⇒ -3/a + 10/8-a = 1
Taking LCM we get,
⇒ -3 ( 8 - a ) + 10 a / ( 8 - a ) a = 1
⇒ 3a - 24 + 10a / 8a - a² = 1
Cross multiplying we get,
⇒ 3a - 24 + 10 = 8a - a ²
⇒ 13a - 24 = 8a - a²
⇒ a² + 13a - 8a - 24 = 0
⇒ a² + 5a - 24 = 0
Solving this equation we get,
⇒ a² + 8a - 3a - 24 = 0
⇒ a ( a + 8 ) -3 ( a + 8 ) = 0
⇒ ( a - 3 ) ( a + 8 ) = 0
⇒ a = 3, -8
If 'a' = 3, then 'b' = 10 - 3 = 7
⇒ Eqn would be: x/3 + y/7 = 1
If 'a' = -8, then 'b' = 10 - ( -8 ) = 18
⇒ Eqn would be: x/-8 + y/18 = 1
AnswEr :
⠀
Let the Intercept be a and b
- Points = ( x,y ) = ( -3,10 )
- Sum of Intercept = (a + b) = 8
» a + b = 8
» b = 8 - a
⠀
• Now A.T.Q. Point Intercept Form
- By Cross Multiplication
⇒ - 24 + 3a + 10a = 8a - a²
⇒ 13a - 24 = 8a - a²
⇒ a² + 13a - 8a - 24 = 0
⇒ a² + 5a - 24 = 0
- Splitting Middle Term
⇒ a² + 8a - 3a - 24 = 0
⇒ a(a + 8) - 3(a + 8) = 0
⇒ (a - 3)(a + 8) = 0
⇒ a = 3 ⠀or, ⠀a = - 8
⇒ b = (8 - 3) = 5 ⠀or, ⠀b = {8 + (- 8)} = 16
⠀
Equation Can Be :
⋆
⋆