Math, asked by salviraju1209, 1 month ago

Find thequadratic polynomial whose sum and the product of zeroes are 3/5 and -1/3 respectively?

Answers

Answered by amansharma264
14

EXPLANATION.

Quadratic polynomial.

Sum of the zeroes = 3/5.

Products of the zeroes = -1/3.

As we know that,

Sum of the zeroes of the quadratic polynomial.

⇒ α + β = - b/a.

⇒ α + β = 3/5. - - - - - (1).

Products of the zeroes of the quadratic polynomial.

⇒ αβ = c/a.

⇒ αβ = -1/3. - - - - - (2).

As we know that,

Formula of quadratic polynomial.

⇒ x² - (α + β)x + αβ.

Put the values in the equation, we get.

⇒ x² - (3/5)x + (-1/3) = 0.

⇒ x² - 3x/5 - 1/3 = 0.

⇒ 15x² - 9x - 5 = 0.

                                                                                                                         

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by BrainlyStar909
12

 \underline{ \sf \pmb {GIVEN \:  \: - }}

  \sf:   \sf \longrightarrow  \rm \: Sum  \: of \:  the \:  zeroes =   \bf\dfrac{3}{5}

  \sf:   \sf \longrightarrow  \rm \: Products \:  of \:  the \:  zeroes =  \bf\dfrac{ - 1}{3}

 \underline{ \sf \pmb {WE \:  KNOW  \:  \: - }}

 \sf \: Formula  \: of \:  quadratic \:  polynomial,

  \sf:   \sf \longrightarrow     \underline{\red{\boxed{\rm \:  x^{2}  - (sum  \: of \:  the \:  zeroes) x  +  \: (products \:  of \:  the \:  zeroes)}}}

 \sf \: Put  \: the  \: values  \: in \:  the  \: equation,

\begin{gathered}  \sf:   \sf \longrightarrow     \rm \:  x^{2}  -  \bigg(\dfrac{3}{5}  \bigg) x  +  \:\bigg(\dfrac{ - 1}{3} \bigg) = 0\\\\\end{gathered}

  \begin{gathered}\sf:   \sf \longrightarrow     \rm \:  x² -  \dfrac{3x}{5}  -  \dfrac{1}{3}  = 0\\\\\end{gathered}

 \begin{gathered} \sf:   \sf \longrightarrow     \bf \:  15x^² - 9x - 5 = 0\end{gathered}

Similar questions