find thesquare root of 2-2i
Answers
Answered by
1
Answer:
Let, √(2 - 2i) = a + bi
On squaring,
» 2 - 2i = a² - b² + 2abi
On comparing real and imaginary parts we get
» a² - b² = 2 ... (1) & ab = - 1 ... (2)
» b = -1/a
» a² - (-1/a)² = 2
» a² - 1/a² = 2
» a⁴ - 2a² - 1 = 0
» a² = (2 ± √8)/2
» a = ±√(1 + √2)
» b = -1/a
» b = -1/[±√(1 + √2)]
» b = -[√(1 + √2)] / (1 + √2) = -√(1 + √2)
= [√(1 + √2)] / (1 + √2) = √(1 + √2)
Therefore, a + bi = { √(1 + √2) - √(1 + √2)i } or
a + bi = { -√(1 + √2) + √(1 + √2)i }.
Answered by
1
Answer:
here is ur answer hope it will help u
Attachments:
Similar questions