Math, asked by satyam847234, 3 months ago

Find theta and hence the shaded area when:
a) AB = 10 cm, r = 10 cm
b) AB = 8 cm, r = 5 cm​

Attachments:

Answers

Answered by devidarshana146
8

Answer:

a) angle of sector =

\pi \times  {r}^{2}  \times  \frac{theta}{360 }

 \frac{22}{7}  \times 10 \times 10 \times  \frac{theta}{360}

 \frac{22}{7}  \times 5   \times 1 \times  \frac{theta}{18}

 \frac{11}{7}  \times 5 \times 1 \times  \frac{theta}{9}

 \frac{55}{7}  \times  \frac{theta}{9}

 \frac{55theta}{63}

55 theta

theta = 55

Area of shaded region =

\pi \times  {r}^{2}  \times  \frac{theta}{360}  -  \frac{ {r}^{2} }{2}  \times  \sin(theta)

 \frac{22}{7}  \times 10 \times 10 \times  \frac{55}{360}  -   \frac{10 \times 10}{2}   \times  \sin(55)

 \frac{11}{7}  \times 5 \times 5 \times  \frac{11}{9}  - 10 \times  \sin(55)

 \frac{3025}{63}  - 10 \times  \sin(55)

 \frac{3025 - 630}{63}  \times  \sin(55)

 \frac{2395}{63}  \times  \sin(55)

38.01 × sin(90-55)

38.01 × sin (45)

38.01 × 1/√2

38.01/√2

26.877

Please mark me briliant

Answered by ymal7539
6

Answer:
theta for part a) 90 degrees

Shaded area part a)  9.06    

Step-by-step explanation:

theta :
MB= 5cm
Sin inverse = 5/10
                   = 30
theta = 30 x 2
theta= 60

shaded area:
Area of sector - area of triangle

\frac{theta}{360} * pi*r^2\\\frac{60}{360} *pi*10^2\\= 52.35

triangle area:
1/2 *10 * 10* sin 60
= 43.30

52.35-43.30
=9.6

Similar questions