Find theta for which sin theta = cos theta If theta is greater than 180 degree but less than 360 degree
Answers
SOLUTION
TO DETERMINE
When
EVALUATION
Here it is given that
Now
FINAL ANSWER
Hence the required value of is 225°
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
1. the value of (1+tan32°)(1+tan13°)/(1+tan23°)(1+tan22°) is
https://brainly.in/question/29883463
2. Find the value of p if
3cosec2A(1+COSA)(1 - COSA) =p
https://brainly.in/question/23381523
Step-by-step explanation:
Thevalueofθ When
\sf{ \sin \theta = \cos \theta \: \: \: \: and \: \: \: {180}^{ \circ} < \theta < {360}^{ \circ} } \:sinθ=cosθand180
∘
<θ<360
∘
EVALUATION
Here it is given that
\sf{ \sin \theta = \cos \theta \: \: \: \: and \: \: \: {180}^{ \circ} < \theta < {360}^{ \circ} } \:sinθ=cosθand180
∘
<θ<360
∘
Now
\sf{ \sin \theta = \cos \theta \: \: \: \: \: gives} \:sinθ=cosθgives
\tan \theta \: = 1tanθ=1
\implies \: \tan \theta \: = \tan \: {45}^{ \circ}⟹tanθ=tan45
∘
\implies \: \tan \theta \: = \tan \: ( {180}^{ \circ} + {45}^{ \circ} )⟹tanθ=tan(180
∘
+45
∘
)
\implies \: \tan \theta \: = \tan \: {225}^{ \circ}⟹tanθ=tan225
∘
\implies \: \theta \: = \: {225}^{ \circ}⟹θ=225
∘