Math, asked by chaudharymehak2800, 5 hours ago

Find theta if 2cos theta + cos square theta=theta​

Attachments:

Answers

Answered by Hadiya6430
0

Step-by-step explanation:

Greater than or equal to

2

−3

and less than or equal to 3

We have,

cos2θ+2cosθ=2cos

2

θ−1+2cosθ=2(cosθ+

2

1

)

2

2

3

Now, 2(cosθ+

2

1

)

2

≥0 for all θ

∴2(cosθ+

2

1

)

2

2

3

2

−3

for all θ

⇒cos2θ+2cosθ≥

2

−3

for all θ

Also, maximum value of this expression is 3.

Answered by mathdude500
8

Question

Solve the equation to find theta :

\rm :\longmapsto\:2cos\theta +  {cos}^{2}\theta = 0

 \:  \:  \:  \:  \:  \: (a) \:  \: \theta = 30\degree

 \:  \:  \:  \:  \:  \: (b) \:  \: \theta = 90\degree

 \:  \:  \:  \:  \:  \: (c) \:  \: \theta = 45\degree

 \:  \:  \:  \:  \:  \: (d) \:  \: \theta = 60\degree

 \blue{\large\underline{\sf{Solution-}}}

Given Trigonometric equation is

\rm :\longmapsto\:2cos\theta +  {cos}^{2}\theta = 0

can be rewritten as after taking common,

\rm :\longmapsto\:cos\theta(2 + cos\theta) = 0

\rm\implies \:cos\theta = 0 \:  \: or \:  \: cos\theta + 2 = 0

\rm\implies \:cos\theta = cos90 \degree \:  \: or \:  \: cos\theta =  - 2

\rm\implies  \: \theta =90 \degree \:  \: or \:  \: cos\theta =  - 2  \:   \:  \:  \:  \: \red{\{rejected \: as \:  - 1 \leqslant cos\theta \leqslant 1 \}}

 \\ \purple{\bf\implies \:\boxed{\tt{  \:  \: \theta \:  =  \: 90 \: \degree \: }}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions