Math, asked by cloab5986, 11 months ago

Find theta if cos theta-sin theta/cos theta+sin theta=1-root3

Answers

Answered by khantharsh87
0

Answer:

Answer:

The value of \thetaθ would be 30°

Step-by-step explanation:

Given expression,

\frac{\sin \theta - \cos\theta}{\sin \theta + \cos \theta}=\frac{1-\sqrt{3}}{1+\sqrt{3}}

sinθ+cosθ

sinθ−cosθ

=

1+

3

1−

3

By cross multiplication,

(1+\sqrt{3})(\sin \theta - \cos\theta) = (1-\sqrt{3})(\sin \theta + \cos\theta)(1+

3

)(sinθ−cosθ)=(1−

3

)(sinθ+cosθ)

\sin \theta+\sqrt{3}\sin \theta- \cos \theta -\sqrt{3}\cos\theta = \sin \theta -\sqrt{3}\sin \theta+\cos \theta - \sqrt{3}\cos \thetasinθ+

3

sinθ−cosθ−

3

cosθ=sinθ−

3

sinθ+cosθ−

3

cosθ

\sqrt{3}\sin \theta- \cos \theta = -\sqrt{3}\sin \theta+\cos \theta

3

sinθ−cosθ=−

3

sinθ+cosθ

2\sqrt{3}\sin \theta = 2\cos \theta2

3

sinθ=2cosθ

\frac{\sin \theta}{\cos \theta}=\frac{1}{\sqrt{3}}

cosθ

sinθ

=

3

1

\tan \theta = \frac{1}{\sqrt{3}}tanθ=

3

1

\implies \theta = 30^{\circ}⟹θ=30

Similar questions