Find third differential coefficient of x^4.e^2x
Answers
Answer:
Step-by-step explanation:
We have,
Step-by-step explanation:
Answer:
Step-by-step explanation:
We have,
\sf{y=x^4\,e^{2x}}y=x
4
e
2x
\sf{\implies\,\dfrac{dy}{dx}=4x^3\,e^{2x}+2x^4\,e^{2x}}⟹
dx
dy
=4x
3
e
2x
+2x
4
e
2x
\sf{\implies\,\dfrac{dy}{dx}=2x^4\,e^{2x}\left(\dfrac{2}{x}+1\right)}⟹
dx
dy
=2x
4
e
2x
(
x
2
+1)
\sf{\implies\,\dfrac{dy}{dx}=2y\left(1+\dfrac{2}{x}\right)}⟹
dx
dy
=2y(1+
x
2
)
\sf{\implies\,\dfrac{d^2y}{dx^2}=2\left(1+\dfrac{2}{x}\right)\dfrac{dy}{dx}+2y\left(-\dfrac{2}{x^2}\right)}⟹
dx
2
d
2
y
=2(1+
x
2
)
dx
dy
+2y(−
x
2
2
)
\sf{\implies\,\dfrac{d^2y}{dx^2}=2y\left(1+\dfrac{2}{x}\right)^2-y\left(\dfrac{4}{x^2}\right)}⟹
dx
2
d
2
y
=2y(1+
x
2
)
2
−y(
x
2
4
)
\sf{\implies\,\dfrac{d^2y}{dx^2}=y\left\{2+\dfrac{8}{x^2}+\dfrac{8}{x}-\dfrac{4}{x^2}\right\}}⟹
dx
2
d
2
y
=y{2+
x
2
8
+
x
8
−
x
2
4
}
\sf{\implies\,\dfrac{d^2y}{dx^2}=y\left(2+\dfrac{4}{x^2}+\dfrac{8}{x}\right)}⟹
dx
2
d
2
y
=y(2+
x
2
4
+
x
8
)
\sf{\implies\,\dfrac{d^2y}{dx^2}=2y\left(1+\dfrac{2}{x^2}+\dfrac{4}{x}\right)}