Math, asked by eddyleetl, 3 months ago

Find this answer with working pls

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Given- }}

\rm :\longmapsto\:f(x) = 6x - 5

\rm :\longmapsto\:g(x) = \dfrac{x + k}{2}

and

\rm :\longmapsto\:g(f(x)) = f(g(x))

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:value \: of \: k

\large\underline{\sf{Solution-}}

Given that ,

\rm :\longmapsto\:f(x) = 6x - 5

\rm :\longmapsto\:g(x) = \dfrac{x + k}{2}

Now,

Consider,

 \red{\bf :\longmapsto\:f(g(x))}

 \: \rm \: =  \:  \:f\bigg(\dfrac{x + k}{2} \bigg)

\: \rm \: =  \:  \:6\bigg(\dfrac{x + k}{2} \bigg) - 5

\: \rm \: =  \:  \:3x + 3k  - 5

 \red{\bf :\longmapsto\:f(g(x)) = 3x + 3k - 5 -  -  - (1)}

Consider,

 \green{\bf :\longmapsto\:g(f(x))}

\: \rm \: =  \:  \:g(6x - 5)

\: \rm \: =  \:  \:\dfrac{6x - 5 + k}{2}

 \green{\bf :\longmapsto\:g(f(x)) = \dfrac{6x + k - 5}{2}  -  -  - (2)}

Now,

It is given that

 \blue{\bf :\longmapsto\:g(f(x)) = f(g(x))}

So, On substituting the values from equation (1) and (2), we get

\rm :\longmapsto\:\dfrac{6x + k - 5}{2}  = 3x + 3k - 5

\rm :\longmapsto\:6x + k - 5 = 6x + 6k - 10

\rm :\longmapsto\:k - 5 = 6k - 10

\rm :\longmapsto\:k - 6k =  - 10 + 5

\rm :\longmapsto\: - 5k =  - 5

\bf\implies \:k = 1

Additional information :-

\rm :\longmapsto\:If \: f(g(x)) = x \: then \: g(x) =  {f}^{ - 1}(x)

\rm :\longmapsto\:If \: g(f(x)) = x \: then \: f(x) =  {g}^{ - 1}(x)

Similar questions