Math, asked by Anonymous, 6 months ago

Find this. ASAP...........!​

Attachments:

Answers

Answered by anindyaadhikari13
4

Question:-

  • Solve the following.

Working out:-

 \sf \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  = a + b \sqrt{3}

 \sf \implies \frac{2 +  \sqrt{3} }{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2  +  \sqrt{3}  }  = a + b \sqrt{3}

 \sf \implies \frac{{(2 +  \sqrt{3} )}^{2}  }{ {2}^{2}  -  {\sqrt{3}}^{2}  } = a + b \sqrt{3}

 \sf \implies \frac{ {(2)}^{2}  + {( \sqrt{3}) }^{2}  + 2 \times 2 \times  \sqrt{3} } {4 - 3} = a + b \sqrt{3}

 \sf \implies \frac{ 5  +  4\sqrt{3} } {1} = a + b \sqrt{3}

 \sf \implies 5 + 4 \sqrt{3}  = a + b \sqrt{3}

Comparing both side, we get,

 \sf a  = 5 \: and \: b = 4

Answer:-

  •  \sf a = 5
  •  \sf b = 4
Similar questions