find this .
#dont spam
#dont Google
#wanted handwritten answer
NO SPAMMING !!
Answers
FORMULA TO BE IMPLEMENTED
1.
We are aware of the formula on Trigonometric Inverse Function that
2.
3.
TO PROVE
EVALUATION
Let
So that
Therefore
Hence proved
Answer:
FORMULA TO BE IMPLEMENTED
1.
We are aware of the formula on Trigonometric Inverse Function that
\displaystyle \: {tan}^{ - 1} a + {tan}^{ - 1} b = {tan}^{ - 1} \: \frac{a + b}{1 - ab}tan
−1
a+tan
−1
b=tan
−1
1−ab
a+b
2.
\sqrt{1 + \cos 2 \theta} = \sqrt{2} \cos \theta
1+cos2θ
=
2
cosθ
3.
\sqrt{1 - \cos 2 \theta} = \sqrt{2} \sin \theta
1−cos2θ
=
2
sinθ
TO PROVE
\displaystyle \: {tan}^{ - 1} \bigg( \frac{ \sqrt{1 + {x}^{2} } \: + \sqrt{1 - {x}^{2} } }{\sqrt{1 + {x}^{2} } \: - \sqrt{1 - {x}^{2} } } \: \bigg) = \frac{\pi}{4} + \frac{1}{2} { \cos}^{ - 1} \: {x}^{2}tan
−1
(
1+x
2
−
1−x
2
1+x
2
+
1−x
2
)=
4
π
+
2
1
cos
−1
x
2
EVALUATION
\displaystyle \: {tan}^{ - 1} \bigg( \frac{ \sqrt{1 + {x}^{2} } \: + \sqrt{1 - {x}^{2} } }{\sqrt{1 + {x}^{2} } \: - \sqrt{1 - {x}^{2} } } \: \bigg)tan
−1
(
1+x
2
−
1−x
2
1+x
2
+
1−x
2
)
Let
{x}^{2} = \cos 2 \thetax
2
=cos2θ
So that
\displaystyle \: \theta = \: \frac{1}{2} { \cos}^{ - 1} \: {x}^{2}θ=
2
1
cos
−1
x
2
Therefore
\displaystyle \: {tan}^{ - 1} \bigg( \frac{ \sqrt{1 + {x}^{2} } \: + \sqrt{1 - {x}^{2} } }{\sqrt{1 + {x}^{2} } \: - \sqrt{1 - {x}^{2} } } \: \bigg)tan
−1
(
1+x
2
−
1−x
2
1+x
2
+
1−x
2
)
= \displaystyle \: {tan}^{ - 1} \bigg( \frac{ \sqrt{1 + \cos 2 \theta} \: + \sqrt{1 - \cos 2 \theta} }{\sqrt{1 + \cos 2 \theta } \: - \sqrt{1 - \cos 2 \theta} } \: \bigg)=tan
−1
(
1+cos2θ
−
1−cos2θ
1+cos2θ
+
1−cos2θ
)
= \displaystyle \: {tan}^{ - 1} \bigg( \: \frac{ \sqrt{2} \cos \theta \: + \sqrt{2} \sin \theta}{ \sqrt{2} \cos \theta \: - \sqrt{2} \sin \theta} \: \bigg)=tan
−1
(
2
cosθ−
2
sinθ
2
cosθ+
2
sinθ
)
= \displaystyle \: {tan}^{ - 1} \bigg( \: \frac{ \cos \theta \: + \sin \theta}{ \cos \theta \: - \sin \theta} \: \bigg)=tan
−1
(
cosθ−sinθ
cosθ+sinθ
)
= \displaystyle \: {tan}^{ - 1} \bigg( \: \frac{ 1 + \tan \theta}{ 1 \: - \tan \theta} \: \bigg)=tan
−1
(
1−tanθ
1+tanθ
)
= \displaystyle \: {tan}^{ - 1} \: 1 + {tan}^{ - 1} ( \:\tan \theta)=tan
−1
1+tan
−1
(tanθ)
= \displaystyle \: \: \frac{\pi}{4} + \theta=
4
π
+θ
= \displaystyle \: \: \frac{\pi}{4} + \frac{1}{2} { \cos}^{ - 1} \: {x}^{2}=
4
π
+
2
1
cos
−1
x
2
Hence proved