Math, asked by vamshi15172, 1 year ago

find this for me 22nd one all 3 bits

Attachments:

Answers

Answered by sumitchouhan67p9s83f
0
here the answer......
Attachments:
Answered by ishwarsinghdhaliwal
0

x = 2 -  \sqrt{3}  \\ (a) \\  \frac{1}{x}  =  \frac{1}{2 -  \sqrt{3}}  \times  \frac{2   +  \sqrt{3}}{2  +  \sqrt{3}}  =  \frac{2 +  \sqrt{3} }{( {2})^{2}  - ( \sqrt{3} ) ^{2} }  =  \frac{2 +  \sqrt{3} }{4 - 3}  = 2 +  \sqrt{3}  \\ (b)  \:  \:  \:  x +  \frac{1}{x}  = 2 -  \sqrt{3}  + 2 +  \sqrt{3}  = 4 \:  \:  \:  \:  \:  \:  \: .....(1) \\ (c) {x}^{2}  +  \frac{1}{ {x}^{2} }  \\ (x +  \frac{1}{x} )^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \:  \:  \: \:  \:  \:  \:  \:   =  >    \: (x +  \frac{1}{x}  = 4 \:  \:  \: from \: 1 )\\ (4) ^{2}  = {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\ 16 - 2 = {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  {x}^{2}  +  \frac{1}{ {x}^{2} } = 14
Similar questions