Math, asked by glvpragnanreddy, 4 months ago

find this question pls​

Attachments:

Answers

Answered by akshatbanzal0800
1

Answer:

\frac{2z}{y + z}  =  \frac{x}{y}

Step-by-step explanation:

let \:   {a}^{x}  =  {b}^{y}  =  {c}^{z}  = k \\  \\ a =  {k}^{ \frac{1}{x} }  \:  \:  \:  \: b = {k}^{ \frac{1}{y} } \:  \:  \:  \:  \:  \: c = {k}^{ \frac{1}{z} } \: (1)

 \frac{b}{a}  =  \frac{c}{b}  \\  \\  {b}^{2}  = ac

From (1),

 {( {k}^{ \frac{1}{x} }) }^{2}  = {k}^{ \frac{1}{y} } \times {k}^{ \frac{1}{z} } \\  \\ {k}^{ \frac{2}{x} } = {k}^{ \frac{1}{y} +  \frac{1}{z}  }

When bases are same, powers can be equated,

 \frac{2}{x}  =  \frac{1}{y}  +  \frac{1}{z}  \\  \\  \frac{2}{x}  =  \frac{z + y}{yz}

 \frac{2z}{y + z}  =  \frac{x}{y}

Hope it helps

Similar questions