Math, asked by maniladhar, 1 year ago

find those integral values of m for which the X co-ordinate of the point of intersection of the lines represented by Y is equal to MX + 1 and 3 X + 4 Y is equal to 9 is an integer

Answers

Answered by MaheswariS
13

\textbf{Given:}

\textsf{Lines are}

\mathsf{y=mx+1\;and\;3x+4y=9}

\textbf{To find:}

\textsf{Integral values of m for which the x co-ordinate}

\textsf{of point of intersection is an integer}

\textbf{Solution:}

\textsf{By solving the given equations,we can find out point of intersection of the given lines}

\mathsf{y=mx+1}--------(1)

\mathsf{3x+4y=9}---------(2)

\mathsf{Using (1) in (2)}

\mathsf{3x+4(mx+1)=9}

\mathsf{3x+4mx+4=9}

\mathsf{3x+4mx=5}

\mathsf{(3+4m)x=5}

\implies\mathsf{x=\dfrac{5}{4m+3}}

\mathsf{From\;(1)}

\mathsf{y=\dfrac{5m}{4m+3}+1}

\mathsf{y=\dfrac{5m+4m+3}{4m+3}}

\mathsf{y=\dfrac{9m+3}{4m+3}}

\therefore\mathsf{The\;point\;of\;intersection\;is\;\left(\dfrac{5}{4m+3},\dfrac{9m+3}{4m+3}\right)}

\textsf{But x co-ordinate is an integer}

\implies\mathsf{\dfrac{5}{4m+3}\;is\;an\;integer}

\implies\mathsf{4m+3=\pm5,\;\pm1}

\mathsf{4m+3=5\;\implies\;m=\dfrac{1}{2}\;is\;not\;an\;integer}

\mathsf{4m+3=-5\;\implies\;m=-2\;is\\;an\;integer}

\mathsf{4m+3=1\;\implies\;m=\dfrac{-1}{2}\;is\;not\;an\;integer}

\mathsf{4m+3=-1\;\implies\;m=-1\;is\;an\;integer}

\therefore\underline{\textbf{The possible values of m are -2 and -1}}

Answered by NewBornTigerYT
1

Question :- find those integral values of m for which the X co-ordinate of the point of intersection of the lines represented by Y is equal to MX + 1 and 3 X + 4 Y is equal to 9 is an integer

Correct Answer in the Attachment

.

©A. Pal_yt

Attachments:
Similar questions