Math, asked by subu802002, 2 months ago

Find three consecutive numbers whose sum is 48.​

Answers

Answered by SachinGupta01
7

\bf \underline{ \underline{\maltese\:Given} }

 \sf \Rrightarrow  Sum  \: of  \: three \:  consecutive  \: numbers  \: is  \: 48.

\bf \underline{ \underline{\maltese\:To \:  find } }

 \sf \implies Three  \: consecutive  \: numbers =  \: ?

\bf \underline{ \underline{\maltese\:Solution  } }

 \sf  Let \:  us  \: assume  \: that,

 \sf \Rrightarrow  Three \:  consecutive \:  numbers  \: be \:    \: (x), \: (x+1), \:( x+2)

 \sf According  \: to \:  question,

 \sf \implies (x)+(x+1)+(x+2)=48

 \sf \implies 3x+3=48

 \sf \implies 3x=48 - 3

 \sf \implies 3x=45

 \sf \implies x= \cancel \dfrac{45}{3}

 \sf \implies x= 15

 \sf  \bigstar \:  Value \:  of  \: x = 15

 \bf \underline {Now},

 \sf \implies First \:  number  \: (x) =  \bf 15

 \sf \implies Second  \:  number  \: (x + 1) =  \bf (15 + 1) = 16

 \sf \implies Third   \:  number  \: (x + 1) =  \bf (15 + 2) = 17

 \bf \underline {Therefore},

 \sf \implies   \underline{\boxed{ \sf The  \: numbers \:  are  \: 15,  \: 16  \: and  \: 17 }}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\bf \underline{ \underline{\maltese\: Verification  } }

To verify the answer just write 15 in place of x.

 \sf \implies (x)+(x+1)+(x+2)=48

 \sf \implies (15)+(15+1)+(15+2)=48

 \sf \implies (15)+(16)+(17)=48

 \sf \implies 15+16+17=48

 \sf \implies 48=48

LHS and RHS are equal.

\bold{\longrightarrow} \:\large{\sf \red{Hence\:Verified\:!}}

Similar questions