find three number in GP whose sum is 19 and product is 216
Answers
Answered by
17
Let the numbers be a/r, a,ar
a/r + a +r =19
a/r*a*ar=219
a^3= 216
a=6
a+ar+ar^2 = 19r
6+6r+6r^2=19r
6r^2-13r+6 =0
6r^2-9r-4r+6=0
3r(2r-3)-2(2r-3)=0
(2r-3)(3r-2)=0
r=3/2 OR r=2/3
plug a & r
when r=3/2
a/r = 6/(3/2) =4
a=6
ar = 9
4,6,9
OR r=2/3
a/r = 6/(2/3) =9
a= 6
ar = 4
9,6,4
plz mark as brilliant
a/r + a +r =19
a/r*a*ar=219
a^3= 216
a=6
a+ar+ar^2 = 19r
6+6r+6r^2=19r
6r^2-13r+6 =0
6r^2-9r-4r+6=0
3r(2r-3)-2(2r-3)=0
(2r-3)(3r-2)=0
r=3/2 OR r=2/3
plug a & r
when r=3/2
a/r = 6/(3/2) =4
a=6
ar = 9
4,6,9
OR r=2/3
a/r = 6/(2/3) =9
a= 6
ar = 4
9,6,4
plz mark as brilliant
Answered by
4
Let three numbers in GP be a/r,a, and ar.
a/r +a+ar=19........(1)
a/r×a×ar=216
a^3=216
a=6.......(2)
from (1)6/r+6+6r=19
6+6r+6r^2=19r
6r^2-13r+6=0
6^2-9r-4r+6=0
3r(2r-3)-2(2r-3)=0
(3r-2)(2r-3)=0
r=2/3,3/2.
case1): a=6,r=2/3. then numbers :9,6,4
case2):a=6,r=3/2 then numbers 4,6and 9.
a/r +a+ar=19........(1)
a/r×a×ar=216
a^3=216
a=6.......(2)
from (1)6/r+6+6r=19
6+6r+6r^2=19r
6r^2-13r+6=0
6^2-9r-4r+6=0
3r(2r-3)-2(2r-3)=0
(3r-2)(2r-3)=0
r=2/3,3/2.
case1): a=6,r=2/3. then numbers :9,6,4
case2):a=6,r=3/2 then numbers 4,6and 9.
Similar questions