Find three numbers in A.P.such that their sum is 24 and the sum of their square is 200?
Answers
Answered by
2
a + (a+d) + (a+2d) = 27
a^2 + (a+d)^2 + (a+2d)^2 = 341
-------
3a + 3d = 27
-----
a + d = 9
a^2 + 9^2 + (9+d)^2 = 341
------
a + d = 9
a^2 + 9^2 + 9^2 + 18d + d^2 = 341
a^2 +18d + 162 + d^2 = 341
-------------------------
a + d = 9
a^2 + 18d + d^2 = 179
-----
a = 9-d
------
(9-d)^2 + 18d + d^2 = 179
81-18d+d^2 + 18d + d^2 = 179
81 + 2d^2 = 179
2d^2 = 98
d^2 = 49
d = 7
Then a = 2
a^2 + (a+d)^2 + (a+2d)^2 = 341
-------
3a + 3d = 27
-----
a + d = 9
a^2 + 9^2 + (9+d)^2 = 341
------
a + d = 9
a^2 + 9^2 + 9^2 + 18d + d^2 = 341
a^2 +18d + 162 + d^2 = 341
-------------------------
a + d = 9
a^2 + 18d + d^2 = 179
-----
a = 9-d
------
(9-d)^2 + 18d + d^2 = 179
81-18d+d^2 + 18d + d^2 = 179
81 + 2d^2 = 179
2d^2 = 98
d^2 = 49
d = 7
Then a = 2
Ankitsingh11111:
dude it is wrong
Similar questions
Physics,
8 months ago
Social Sciences,
1 year ago
Math,
1 year ago
English,
1 year ago
Environmental Sciences,
1 year ago
English,
1 year ago