Math, asked by swarnaabi6630, 9 months ago

Find three numbers in AP whose sum is 24 and the sum of whose squares is 224

Answers

Answered by Anonymous
16

 \large\bf\underline{Given:-}

  • Sum of terms = 24
  • sum of squares of terms is 224

 \large\bf\underline {To \: find:-}

  • terms

 \huge\bf\underline{Solution:-}

Let the three terms be (a-d ), a , (a+ d)

According to question :-

First condition:-

  • sum of three terms is 24

»» (a - d) + a ( a + d ) = 24

»» a - d + a + a + d = 24

»» 3a = 24

»» a = 24 /3

»» a = 8

Second condition :-

  • Sum of squares of three terms is 224

»» (a - d)² + a² + ( a+ d)² = 224

»» a² + d² - 2ad + a² + a² + d² + 2ad = 224

»» a² + a² + a² + d² + d² = 224

»» 3a² + 2d² = 224

  • putting value of a = 8

»» 3 × 8² + 2d² = 224

»» 3 × 64 + 2d² = 224

»» 192 + 2d² = 224

»» 2d² = 224 - 192

»» 2d² = 32

»» d² = 32/2

»» d² = 16

»» d = √16

»» d = 4

So,

three numbers are :-

a - d = 8 - 4 = 4

a = 8

a + d = 8 + 4 = 12.

✝️Three numbers are 4 , 8 , 12

Answered by Anonymous
226

\rule{200}{2}

\\

\Huge\bigstar\:\tt\underline\red{GIVEN}\\\\\\

\:\:\:\:\:\bullet\:\:\:\:\sf\blue{ Sum \:of \:terms\:=\:24}\\

\:\:\:\:\:\bullet\:\:\:\:\sf\blue{ Sum\: of\: squares \: of\: terms\:=\:224}

\\

\rule{200}{2}

\\

\Huge\bigstar\:\tt\underline\red{TO\:FIND}\\\\\\

\:\:\:\:\:\:\:\:\:\:\:\:\bullet\:\:\:\:\sf\blue{Terms}\\

\\

\rule{200}{2}

\\

\Huge\bigstar\:\tt\underline\red{SOLUTION}\\\\\\

\sf\orange{Let \: (a - d),\: a, \:(a + d) \:be\: the\: three \:terms \:of \:AP}

\\

\sf\gray{sum \:of \:these \:three\: terms}:

\\

\Large\leadsto \:\:\:\: \sf \purple {a - d + a + a + d = 24}

\\

\Large\leadsto \:\:\:\: \sf \green {3a = 24}

\\

\Large\leadsto \:\:\:\: \sf \purple {a={\huge\frac{24}{3}} }

\\

\Large\leadsto \:\:\:\: \sf \green {a = 8}

\\

\large\star\:\sf\underline\pink{Sum\: of \:square \:of\: these\: terms} :

\\

\Large\leadsto \:\:\:\: \sf \purple {(a-d)^{2}+a^{2}+(a+d)^{2}= 224}

\\

\Large\leadsto \:\:\:\: \sf \green {a^{2}+d^{2}-2ad+a^{2}+a^{2}+d^{2}+2ad=224}

\\

\Large\leadsto \:\:\:\: \sf \purple {3a^{2}+2d^{2}=224}

\\

\large\star\:\sf\underline\pink{Plugging\: a \:=\: 8}

\\

\Large\leadsto \:\:\:\: \sf \purple {3 × 8^{2} + 2d^{2} = 224}

\\

\Large\leadsto \:\:\:\: \sf \green {3 × 64 + 2d^{2} = 224}

\\

\Large\leadsto \:\:\:\: \sf \purple {192 + 2d^{2} = 224}

\\

\Large\leadsto \:\:\:\: \sf \green {2d^{2} = 224 - 192}

\\

\Large\leadsto \:\:\:\: \sf \purple {2d^{2} = 32}

\\

\Large\leadsto \:\:\:\: \sf \green {d^{2} = {\huge\frac{32}{2}} }

\\

\Large\leadsto \:\:\:\: \sf \purple {d^{2} = 16}

\\

\Large\leadsto \:\:\:\: \sf \green {d = \sqrt{16}}

\\

\Large\leadsto \:\:\:\: \sf \purple {d = 4}

\\

\Large\sf\underline\orange{So, \: 3 \:numbers\: are} :-

\\

\Large\leadsto \:\:\:\: \sf \purple {a - d = 8 - 4 = 4}

\\

\Large\leadsto \:\:\:\: \sf \green {a = 8}

\\

\Large\leadsto \:\:\:\: \sf \purple {a + d }

\\

\Large\leadsto \:\:\:\: \sf \green { 8 + 4}

\\

\Large\leadsto \:\:\:\: \sf \purple {12}

\\

\large\dagger\:\:\:\bf\underline\red{Three\:\:Numbers\:\:Are}

  • \Large\mathfrak\pink{4}
  • \Large\mathfrak\pink{8}
  • \Large\mathfrak\pink{12}

\\

\rule{200}{2}

Similar questions