Find three numbers in G.P. such that their
sum is 21 and sum of their squares is 189.
Answers
Assume,
Common ratio of GP be t
Common ratio between these terms be (t)^a
(t)^a = b
Assume,
k = Common ratio
Given,
Sum of terms = 21
Sum of squares = 189
Also,
Squaring both sides of (1)
From eq (1) we have
a(21) = 126
a = 6
Putting the value of a in (1) we get :-
2b² - 5b + 2 = 0
2b² - (4 + 1)b + 2 = 0
2b² - 4b - b + 2 = 0
2b(b - 2) - (b - 2) = 0
(b - 2)(2b - 1) = 0
When, b = 2
a = 6
ab = 6 × 2 = 12
= 6 × 2
= 12
a = 6
= 3
Therefore,
Answer:
HI MATE.
Assume,
Common ratio of GP be t
Common ratio between these terms be (t)^a
(t)^a = b
Assume,
{\boxed{\sf\:{Required\;Terms\;are=\dfrac{a}{b},a\;and\;ab}}}
RequiredTermsare=
b
a
,aandab
k = Common ratio
Given,
Sum of terms = 21
Sum of squares = 189
\rm \: \: \: \: \: \: \: \: \:=\dfrac{a}{b}+a+ab=21.....(1)=
b
a
+a+ab=21.....(1)
Also,
\rm \: \: \: \: \: \: \: \: \:=(\dfrac{a}{b})^2+a^2+(ab)^2=189.....(2)=(
b
a
)
2
+a
2
+(ab)
2
=189.....(2)
Squaring both sides of (1)
\rm \: \: \: \: \: \: \: \: \:=(\dfrac{a}{b}+a+ab)^2=(21)^2=(
b
a
+a+ab)
2
=(21)
2
\rm \: \: \: \: \: \: \: \: \:=(\dfrac{a}{b})^2+a^2+(ab)^2+2[(\dfrac{a}{b}\times a)+(a\times ab)+(ab\times\dfrac{a}{b})]=441=(
b
a
)
2
+a
2
+(ab)
2
+2[(
b
a
×a)+(a×ab)+(ab×
b
a
)]=441
\rm \: \: \: \: \: \: \: \: \:=189+2(\dfrac{a^2}{b}+a^2 b+a^2=441=189+2(
b
a
2
+a
2
b+a
2
=441
\rm \: \: \: \: \: \: \: \: \:=2(\dfrac{a^2}{b}+a^2 b+a^2=441-189=2(
b
a
2
+a
2
b+a
2
=441−189
\rm \: \: \: \: \: \: \: \: \:=a^2(\dfrac{1}{b}+b+1=\dfrac{252}{2}=a
2
(
b
1
+b+1=
2
252
\rm \: \: \: \: \: \: \: \: \:=a^2(\dfrac{1}{b}+b+1=126=a
2
(
b
1
+b+1=126
\rm \: \: \: \: \: \: \: \: \:=a(\dfrac{a}{b}+ab+a=126=a(
b
a
+ab+a=126
From eq (1) we have
a(21) = 126
\rm \: \: \: \: \: \: \: \: \:a=\dfrac{126}{21}a=
21
126
a = 6
Putting the value of a in (1) we get :-
\rm \: \: \: \: \: \: \: \: \:=\dfrac{6}{b}+6+6b=21=
b
6
+6+6b=21
\rm \: \: \: \: \: \: \: \: \:=6(\dfrac{1}{b}+1+b)=21=6(
b
1
+1+b)=21
\rm \: \: \: \: \: \: \: \: \:=\dfrac{1}{b}+b+1=\dfrac{21}{6}=
b
1
+b+1=
6
21
\rm \: \: \: \: \: \: \: \: \:=\dfrac{1+b^2}{b+1}=\dfrac{7}{2}=
b+1
1+b
2
=
2
7
\rm \: \: \: \: \: \: \: \: \:=\dfrac{1+b^2}{b}=\dfrac{5}{2}=
b
1+b
2
=
2
5
2b² - 5b + 2 = 0
2b² - (4 + 1)b + 2 = 0
2b² - 4b - b + 2 = 0
2b(b - 2) - (b - 2) = 0
(b - 2)(2b - 1) = 0
\rm \: \: \: \: \: \: \: \: \:b=2\;or\;\dfrac{1}{2}b=2or
2
1
When, b = 2
\textbf{\underline{Tems\;are:-}}
Temsare:-
\rm \: \: \: \: \: \: \: \: \:=\dfrac{a}{b}=\dfrac{6}{2}=3=
b
a
=
2
6
=3
a = 6
ab = 6 × 2 = 12
\textbf{\underline{Numbers\;are\;3\;and\;6\;and\;12}}
Numbersare3and6and12
\rm \: \: \: \: \: \: \: \: \:When,\;b=\dfrac{1}{2}When,b=
2
1
\textbf{\underline{Tems\;are:-}}
Temsare:-
\rm \: \: \: \: \: \: \: \: \:=\dfrac{a}{b}=\dfrac{6}{1/2}=
b
a
=
1/2
6
= 6 × 2
= 12
a = 6
\rm \: \: \: \: \: \: \: \: \:ab=6\times\dfrac{1}{2}ab=6×
2
1
= 3
\textbf{\underline{Numbers\;are\;12\;and\;6\;and\;3}}
Numbersare12and6and3
Therefore,
\huge{\boxed{\bigstar{{Required\;numbers=3,6\;and\;12}}}}
★Requirednumbers=3,6and12
Hope it helps you mate.
please thank and mark my answer as brainliest.
humble request.....
@ ANUSHA ✌❤