Physics, asked by shagunmayank1401, 6 months ago

find time when boy catches the girl or when they are at their closest separation..
velocity of boy is 50m/s and velocity of girl is 30m/s and acceleration of boy is 1m/s^2 and acceleration of girl is 2m/s^2 and distance between them is 150m​

Answers

Answered by BrainlyConqueror0901
21

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Time=10\:sec\:and\:30\:sec}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline{\bold{Given :}}}  \\  \tt:  \implies Velocity \: of \: boy = 50 \: m/s \\  \\  \tt:  \implies Velocity \: of \: girl = 30 \: m/s \\  \\  \tt:  \implies Acceleration \: of \: boy =  {1 \: m/s}^{2}  \\  \\ \tt:  \implies Acceleration \: of \:girl=  {2\: m/s}^{2}  \\  \\  \tt:  \implies Sepration \: between \: them = 150 \: m \\  \\ \red{\underline{\bold{To \: Find :}}} \\  \tt:  \implies Time \: taken \: to \: catch \: the \: girl =?

• According to given question :

 \green{\star} \:  \text{Using \: relative \: motion \: method} \\  \\  \green{ \circ} \:  \tt Net \: velocity = 50 - 30 = 20 \: m/s \\  \\ \green{ \circ} \:  \tt Net \: acceleration = 1 - 2 = - 1\: m /{s}^{2}  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies s = ut +  \frac{1}{2}  {at}^{2}  \\  \\ \tt:  \implies 150 = 20 \times t +  \frac{1}{2}  \times  -1 \times  {t}^{2}  \\  \\ \tt:  \implies 300 = 40t -  {t}^{2}  \\  \\ \tt:  \implies  {t}^{2}  - 40t  + 300 = 0 \\  \\ \tt:  \implies t =  \frac{  - ( - 40) \pm\sqrt{ { (- 40)}^{2}  - 4 \times 1 \times 300} }{2 \times 1}  \\  \\ \tt:  \implies t =  \frac{40 \pm \sqrt{1600 - 1200} }{2}  \\  \\ \tt:  \implies t =  \frac{40 \pm 20}{2}  \\  \\  \green{\tt:  \implies t = 10 \: sec \: and \: 30 \: sec}

Similar questions