Math, asked by snchobi7969, 11 months ago

Find tn for following A.P. 3,8,13,18.......and then find 30th term of A.P.

Answers

Answered by BrainlyConqueror0901
55

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore t_{n}=3n-2}}

{\bold{\therefore a_{30}=148}}

{\bold{\underline{\underline{Step\:by\:step\:explanation:}}}}

• In the given question information given about an A.P whose first term and common difference is given.

• We have to find the tn term and 30th term of this A.P.

 \underline \bold{Given : } \\  \implies A.P = 3,8,13,18,.... \\  \\  \implies First \: term (a)= 3 \\  \\  \implies Common \: difference(d) = 5 \\  \\\implies n=30\\\\ \underline \bold{To \: Find : } \\  \implies  t_{n} = ? \\  \\  \implies  a_{30} = ?

• According to given question :

 \bold{Using \: formula \: of \:  n_{th} \: term: } \\  \implies a_{n} = a +( n - 1)d \\  \\  \implies a_{n} = 3 + (n - 1) \times 5 \\  \\ \implies a_{n} =  3 + 3n  {- 5} \\  \\  \bold{\implies a_{n} = 3n-2} \\  \\  \bold{For \: finding \:  a_{30}  \: term } \\  \implies a_{n} = a +( n - 1)d \\  \\ \implies a_{30} = 3 + (30 - 1) \times 5 \\  \\ \implies a_{30} = 3 + 29 \times 5 \\  \\ \implies a_{30} = 3 + 145 \\  \\  \bold{\implies a_{30} = 148}

Answered by Anonymous
101

Solution:

Given:

=> A.P = 3, 8, 13, 18.....

=> a = 3

=> d = \sf{a_{2}-a}

       = 8 - 3

       = 5

To Find:

=> 30th term of A.P

Formula used:

\sf{\implies T_{n}=a+(n-1)d}

Firstly we calculate Tn,

\sf{\implies T_{n}=a+(n-1)d}

\sf{\implies T_{n}=3+(n-1)5}

\sf{\implies T_{n}=3+5n-5}

\sf{\implies T_{n}=3n-2}

Now, we will find 30th term

\sf{\implies T_{n}=a+(n-1)d}

\sf{\implies T_{30}=3+(30-1)5}

\sf{\implies T_{30}=3+29\times 5}

\sf{\implies T_{30}=3+145}

\bf{\implies T_{30}=148}

Hence, the 30th term is 148.

Similar questions