Math, asked by legendboy12, 6 months ago

find to the three places o decimals the radius of the circle whose area is the sum of the areas of two triangles whose sides are 35,53,66 and 33,56,65 measured in centimetres ( use π= 22/7 )​

Answers

Answered by Farira
2

Hope it will help you!!!!!

Attachments:
Answered by vanshikavikal448
201

 \huge \bold{ \fbox{ \underline {required \: answer}}}

 \bold{ \underline{ \underline{answer}}}→ \:

{ \tt \: 14 \sqrt{3} }

 \bold{ \underline{ \underline{solution}}}→

we have to find the areas of both triangles by heron's formula,

 \bold{ \tt if \: a, \: b \: and \: c \: are \: sides \: of \triangle} \\   \bold{ \tt area =  \sqrt{s(s - a)(s - b)(s - c)} } \\  \\  \bold{ \tt \: where ,\:  \: s =  \frac{a + b + c}{2} }

for the first triangle,we have

a = 35, b = 53, and c = 66

 \bold{ \tt s =  \frac{35 + 53 + 66}{2} } \\  \\  \bold{ \tt s =  \frac{154}{2} = 77cm }

Let , A1 be the area of the first triangle. Then,

{ \tt A1 =  \sqrt{s(s - a)(s- b)(s - c)} } \\  \\  { \tt \implies A1 =  \sqrt{77(77 - 35)(77 - 53)(77 - 66)} } \\  \\ { \tt \implies A1 =  \sqrt{77 \times 42 \times 24 \times 11} } \\  \\  { \tt \implies A1 =  \sqrt{7 \times 11 \times 7 \times 6 \times 6 \times 4 \times 11} } \\  \\  { \tt \implies A1 =  \sqrt{ {7}^{2}  \times  {11}^{2} \times  {6}^{2}   \times  {2}^{2} } } \\  \\  { \tt \implies A1 = 7 \times 11  \times 6 \times 2} \\  \\  { \tt \implies A1 = 924 {cm}^{2} ...........(i)}

For second triangle, we have

a = 33 , b = 56 and c = 65

  { \tt s =  \frac{33 + 56 + 65}{2} } \\  \\   { \tt \implies s =  \frac{154}{2} = 77cm }

Let, A2 be the area of second triangle. Then,

 { \tt  A2 =   \sqrt{s(s - a)(s - b)(s - c)} }   \\  \\  { \tt \implies A2 =  \sqrt{77(77 - 33)(77 - 56)(77 - 65)} } \\  \\  { \tt \implies A2 =  \sqrt{77 \times 44 \times 21 \times 12} } \\  \\  { \tt \implies A2 =  \sqrt{7 \times 11 \times 4 \times 11 \times 3 \times 7 \times 3 \times 4} } \\  \\  { \tt \implies A2 =  \sqrt{ {7}^{2} \times  {11}^{2} \times  {4}^{2} \times  {3}^{2} } } \\  \\  { \tt \implies A2 = 7 \times 11 \times 4 \times 3} \\  \\  { \tt \implies A2 = 924 {cm}^{2}........(ii) }

now, Let r be the radius of the circle. Then,

according to question,

Area of the circle = sum of areas of two triangles

{ \tt \implies \pi {r}^{2}  =A1 + A2 } \\  \\ { \tt by \: using \: (i) \: and \: (ii)  }  \\ \\ { \tt \implies \pi {r}^{2} = 924 + 924 } \\  \\  { \tt \implies  \frac{22}{7} \times  {r}^{2}  = 1848 } \\  \\  { \tt \implies \:  {r}^{2}  = 1848 \times  \frac{7}{22} } \\  \\ { \tt \implies  {r}^{2}  = 3 \times 4 \times 7 \times 7 } \\  \\ { \tt \implies \: r =  \sqrt{3 \times  {2}^{2}  \times  {7}^{2} } }  \\  \\ { \tt \implies \: r = 2 \times 7 \times  \sqrt{3} } \\  \\  { \tt \implies r = 14 \sqrt{3} }

hence, radius of circle is 14√3cm

Similar questions