Math, asked by krutikish, 8 months ago

find total surface area of a cylinder of diameter 20 and height 50 pie 3.14​

Answers

Answered by reenujain0008
2

Answer:

3768

Step-by-step explanation:

r=10m

h=50m

TSA of cylinder =2πrh+2πr^2

=2*3.14*10*50+2*3.14*10*10

=3768m^2

Answered by varadad25
4

Answer:

Total surface area of the cylinder is 3768 unit².

Step-by-step-explanation:

We have given the dimensions of a cylinder.

\bullet\sf\:Diameter\:(\:d\:)\:=\:20\\\\\\\bullet\sf\:Height\:(\:h\:)\:=\:50\\\\\\\bullet\sf\:\pi\:=\:3.14

We have to find the total surface area of the cylinder.

We know that,

\pink{\sf\:Total\:surface\:area\:of\:cylinder\:=\:2\:\pi\:r\:(\:r\:+\:h\:)}\\\\\\\implies\sf\:TSA_{cylinder}\:=\:2\:\times\:r\:\times\:3.14\:(\:r\:+\:50\:)\\\\\\\implies\sf\:TSA_{cylinder}\:=\:d\:\times\:3.14\:\times\:\left(\:\dfrac{d}{2}\:+\:h\:\right)\:\:\:-\:-\:[\:\because\:d\:=\:2r\:]\\\\\\\implies\sf\:TSA_{cylinder}\:=\:20\:\times\:3.14\:\times\:\left(\:\cancel{\dfrac{20}{2}}\:+\:50\:\right)\\\\\\\implies\sf\:TSA_{cylinder}\:=\:20\:\times\:3.14\:\times\:(\:10\:+\:50\:)\\\\\\\implies\sf\:TSA_{cylinder}\:=\:20\:\times\:3.14\:\times\:60\\\\\\\implies\sf\:TSA_{cylinder}\:=\:3.14\:\times\:1200\\\\\\\implies\sf\:TSA_{cylinder}\:=\:314\:\times\:12\\\\\\\implies\boxed{\red{\sf\:TSA_{cylinder}\:=\:3768\:unit^2}}

\rule{200}{1}

Additional Information:

\boxed{\begin{minipage}{5 cm}\underline{\bf\:Formulae\:related\:to\:cylinder}\\\\\sf\:1.\:Area\:of\:base\:=\:\pi\sf\:r^2\\\\\sf\:2.\:Curved\:surface\:area\:=\:2\:\pi\:r\:h\\\\\sf\:3.\:Total\:\:surafce\:\:area\:=\:2\:\pi\:r\:(\:r\:+\:h\:)\\\\\sf\:4.\:Volume\:=\:\pi\:r^2\:h\end{minipage}}

Similar questions