Math, asked by prerna20b59, 5 months ago

find TSA and LSA of a cuboidcol boxwhose length and breadth and height are 70cm *40 cm*20cm respectively​

Answers

Answered by Auяoяà
22

Given :

  • Length of the cuboid = 70cm
  • Breadth of the cuboid = 40 cm
  • Height of the cuboid = 20 cm

To find :

  • The TSA (Total surface area)
  • The LSA (Lateral surface area)

Solution :

★Part 1 :

Finding the TSA of the cuboid.

We know that,

\underline{\fbox{\text{\sf{\pink{TSA of cuboid= 2(lb+bh+lh)}}}}}

Putting the values :

\sf{TSA = 2(70\times40 + 40\times20 + 70\times20)}

\sf{TSA = 2(2800 + 800 + 1400)}

\sf{TSA = 2\times5000}

{\underline{\sf{\blue{TSA = 10,000 cm^2}}}}

------------------------------

★Part 2 :

Finding the LSA of the cuboid.

We know that,

\pink {\underline {\boxed {\sf LSA \ of \ cuboid \ = \ 2(l+b) \times h}}}

Putting the values :

\sf{LSA = 2(70 + 40) \times20}

\sf{LSA = 2 \times110 \times20}

\sf{LSA = 220 \times20}

{\underline{\sf{\blue{LSA = 4,400 cm^{2}}}}}

________________________

\underline{\text{\bf{\purple{Final Answer :}}}}

\sf{The \ TSA \ of \ cuboid = 10,000cm^2}

\sf{And\ the \ LSA \ of\ cuboid = 4,400cm^2}

——————

Here,

  • L = length
  • B = Breadth
  • H = Height
  • T.S.A. = Total Surface Area
  • L.S.A. = Lateral Surface Area
Answered by SwiftTeller
51

Question:-

find TSA and LSA of a Cuboidal box whose length and breadth and height are 70cm *40 cm*20cm respectively??

______________________________________________________

Given:-

 \longrightarrow \: length \: of \: the \: cuboidal \: box \: (l) .\\  \longrightarrow \: breadth \: of \: the \: cuboidal \: box \: (b). \\ \longrightarrow \: height \: of \: the \: cuboidal \: box \: (h).

______________________________________________________

Find:-

L.S.A. \: and \: T.S.A. \: of \: the \:  cuboidal \: box

 \longrightarrow \: L.S.A.(lateral \: surface \: area \:  or \: curved \: surface \: area ) \\ \longrightarrow T.S.A.(total \: surface \: area)

______________________________________________________

Solution:-

L.S.A. \: of \: cuboidal \: box   \longrightarrow \:2(l + b) \times h \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \longrightarrow2(70cm + 40cm) \times 20  cm \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \longrightarrow \: 220cm \times 20 cm \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow4400 {cm}^{2}

______________________________________________________

T.S.A. \: of \: cuboidal \: box \:  \longrightarrow \: 2(lb + bh + hl) \\  \longrightarrow 2(70cm \times 40cm + 40cm \times 20cm + 20cm \times 40cm) \\  \longrightarrow \: 2(2800 + 800 + 1400 ) \\  \longrightarrow2 \times 5000 \\  \longrightarrow10000 {cm}^{2}

______________________________________________________

Final Answer:-

L.S.A. of cuboidal box

\longrightarrow4400 {cm}^{2}

T.S.A. of cuboidal box

\longrightarrow10000 {cm}^{2}

______________________________________________________

Similar questions