Find two consecutive natural numbers whose product is 20.
harshu494:
hy neha nice answer did u remember me??
Answers
Answered by
15
Let the two consecutive natural numbers be x and x+1 .
A/Q
(x)(x+1) = 20
x^2 + x =20
____________________________
x=4
x+1 = 4+1 = 5
_____________________________
x+5=0
x=-5
x+1 = -5+1
=-4
______________________________
But question demands natural numbers.
Natural Numbers starts from 1 .
So, the two numbers are :- 4 and 5.
Answered by
1
step1−decidethenumbers
Let the two consecutive natural numbers be x and x+1 .
A/Q
\bf{ \green{step \: 2 - }multiply \: them}step2−multiplythem
(x)(x+1) = 20
\bf{ \blue{step \: 3 - }solve \: quadrati c \: equation}step3−solvequadraticequation
x^2 + x =20
{x}^{2} + x - 20 = 0x2+x−20=0
{x}^{2} + (5 - 4)x - 20 = 0x2+(5−4)x−20=0
{x}^{2} + 5x - 4x - 20 = 0x2+5x−4x−20=0
x(x + 5) - 4(x + 5) = 0x(x+5)−4(x+5)=0
(x - 4)(x + 5) = 0(x−4)(x+5)=0
x - 4 = 0x−4=0
____________________________
\huge{\underline{\bf{Case\:1}}}Case1
x=4
x+1 = 4+1 = 5
_____________________________
\huge{\underline{\bf{Case\:2}}}Case2
x+5=0
x=-5
x+1 = -5+1
=-4
______________________________
\begin{lgathered}\textbf{So the two numbers can either} \\ \textbf{be 4 and 5 or -5 and -4}\end{lgathered}So the two numbers can eitherbe 4 and 5 or -5 and -4
But question demands natural numbers.
Natural Numbers starts from 1 .
So, the two numbers are :- 4 and 5.
Let the two consecutive natural numbers be x and x+1 .
A/Q
\bf{ \green{step \: 2 - }multiply \: them}step2−multiplythem
(x)(x+1) = 20
\bf{ \blue{step \: 3 - }solve \: quadrati c \: equation}step3−solvequadraticequation
x^2 + x =20
{x}^{2} + x - 20 = 0x2+x−20=0
{x}^{2} + (5 - 4)x - 20 = 0x2+(5−4)x−20=0
{x}^{2} + 5x - 4x - 20 = 0x2+5x−4x−20=0
x(x + 5) - 4(x + 5) = 0x(x+5)−4(x+5)=0
(x - 4)(x + 5) = 0(x−4)(x+5)=0
x - 4 = 0x−4=0
____________________________
\huge{\underline{\bf{Case\:1}}}Case1
x=4
x+1 = 4+1 = 5
_____________________________
\huge{\underline{\bf{Case\:2}}}Case2
x+5=0
x=-5
x+1 = -5+1
=-4
______________________________
\begin{lgathered}\textbf{So the two numbers can either} \\ \textbf{be 4 and 5 or -5 and -4}\end{lgathered}So the two numbers can eitherbe 4 and 5 or -5 and -4
But question demands natural numbers.
Natural Numbers starts from 1 .
So, the two numbers are :- 4 and 5.
Similar questions