Math, asked by sagarsagar2559, 10 months ago

. Find two consecutive numbers whose squares have the sum 85.​

Answers

Answered by ParthPandey12
1

Answer:

THE ANSWER I AM WRITING IS 100 PERCENT CORRECT.

PLEASE MARK IT AS BRAINLIEST.

HOPE IT HELPS YOU...

Step-by-step explanation:

Let the numbers be x and (x+1) respectively,

                           ATQ,

  x²+(x+1)²=85

⇒x²+x²+1²+2(x)(1)=85                  {after expanding (x+1)²}

⇒  2x²+1+2x=85

⇒2x²+2x=85-1

⇒2x²+2x=84

⇒2(x²+x)=84

⇒x²+x=\frac{84}{2}

⇒x²+x=42

⇒x²+x-42=0

⇒x²+7x-6x-42=0                                      {middle-term splitting}

⇒x(x+7)-6(x+7)=0

⇒(x-6)(x+7)=0

When (x+7)=0 then x=6 {leave the other value because square can never              

                                                           be negative}    

Hence, the consecutive numbers = 6 and (x+1)=(6+1)=7      

Similar questions