Find two consecutive odd positive integers, sum of whose squares is 970.
Answers
Answered by
6
SOLUTION :
Let the one consecutive odd integer be (x + 1) and other consecutive odd integer be (x + 3).
A .T.Q
(x + 1)² + (x + 3)² = 970
x² + 1 + 2x + x² + 9 + 6x = 970
[(a + b)² = a² + b² + 2ab ]
2x² + 8x + 10 = 970
2x² + 8x + 10 - 970 = 0
2x² + 8x - 960 = 0
2(x² + 4x - 480) = 0
x² + 4x - 480 = 0
x² + 24x - 20x - 480 = 0
[By middle term splitting]
x(x + 24) - 20(x + 24) = 0
(x - 20) (x + 24) = 0
(x - 20) = 0 or (x + 24) = 0
x = 20 or x = - 24
Since, x is a positive integer, so x ≠ - 24
Therefore , x = 20
First odd number (x + 1) = 20 + 1 = 21
Second odd number (x + 3) = 20 + 3 = 23
Hence, the two odd positive numbers be (21, 23).
HOPE THIS ANSWER WILL HELP YOU.. .
Answered by
3
ʟᴇᴛ ᴛʜᴇ ᴏɴᴇ ᴄᴏɴsᴇᴄᴜᴛɪᴠᴇ ᴏᴅᴅ ɪɴᴛᴇɢᴇʀ ʙᴇ (x + 1) ᴀɴᴅ ᴏᴛʜᴇʀ ᴄᴏɴsᴇᴄᴜᴛɪᴠᴇ ᴏᴅᴅ ɪɴᴛᴇɢᴇʀ ʙᴇ (x + 3).
ᴀ .ᴛ.ǫ
(x + 1)² + (x + 3)² = 970
x² + 1 + 2x + x² + 9 + 6x = 970
[(ᴀ + ʙ)² = ᴀ² + ʙ² + 2ᴀʙ ]
2x² + 8x + 10 = 970
2x² + 8x + 10 - 970 = 0
2x² + 8x - 960 = 0
2(x² + 4x - 480) = 0
x² + 4x - 480 = 0
x² + 24x - 20x - 480 = 0
[ʙʏ ᴍɪᴅᴅʟᴇ ᴛᴇʀᴍ sᴘʟɪᴛᴛɪɴɢ]
x(x + 24) - 20(x + 24) = 0
(x - 20) (x + 24) = 0
(x - 20) = 0 ᴏʀ (x + 24) = 0
x = 20 ᴏʀ x = - 24
sɪɴᴄᴇ, x ɪs ᴀ ᴘᴏsɪᴛɪᴠᴇ ɪɴᴛᴇɢᴇʀ, sᴏ x ≠ - 24
ᴛʜᴇʀᴇғᴏʀᴇ , x = 20
ғɪʀsᴛ ᴏᴅᴅ ɴᴜᴍʙᴇʀ (x + 1) = 20 + 1 = 21
sᴇᴄᴏɴᴅ ᴏᴅᴅ ɴᴜᴍʙᴇʀ (x + 3) = 20 + 3 = 23
ʜᴇɴᴄᴇ, ᴛʜᴇ ᴛᴡᴏ ᴏᴅᴅ ᴘᴏsɪᴛɪᴠᴇ ɴᴜᴍʙᴇʀs ʙᴇ (21, 23).
ᴀ .ᴛ.ǫ
(x + 1)² + (x + 3)² = 970
x² + 1 + 2x + x² + 9 + 6x = 970
[(ᴀ + ʙ)² = ᴀ² + ʙ² + 2ᴀʙ ]
2x² + 8x + 10 = 970
2x² + 8x + 10 - 970 = 0
2x² + 8x - 960 = 0
2(x² + 4x - 480) = 0
x² + 4x - 480 = 0
x² + 24x - 20x - 480 = 0
[ʙʏ ᴍɪᴅᴅʟᴇ ᴛᴇʀᴍ sᴘʟɪᴛᴛɪɴɢ]
x(x + 24) - 20(x + 24) = 0
(x - 20) (x + 24) = 0
(x - 20) = 0 ᴏʀ (x + 24) = 0
x = 20 ᴏʀ x = - 24
sɪɴᴄᴇ, x ɪs ᴀ ᴘᴏsɪᴛɪᴠᴇ ɪɴᴛᴇɢᴇʀ, sᴏ x ≠ - 24
ᴛʜᴇʀᴇғᴏʀᴇ , x = 20
ғɪʀsᴛ ᴏᴅᴅ ɴᴜᴍʙᴇʀ (x + 1) = 20 + 1 = 21
sᴇᴄᴏɴᴅ ᴏᴅᴅ ɴᴜᴍʙᴇʀ (x + 3) = 20 + 3 = 23
ʜᴇɴᴄᴇ, ᴛʜᴇ ᴛᴡᴏ ᴏᴅᴅ ᴘᴏsɪᴛɪᴠᴇ ɴᴜᴍʙᴇʀs ʙᴇ (21, 23).
Similar questions