Math, asked by shavar1612, 9 months ago

find two consecutive positive integers, sum of whose square is 365​

Answers

Answered by upendrasingh1799906
0

Answer:

there is difference of 1 in consecutive positive integers. Let's first integer = x. so, second integer = x+1. also given that, sum of squares=365(first number)square +(second number)square =365

Answered by sourya1794
48

Given :-

  • sum of two consecutive positive integers of square is 365

To find :-

  • Two consecutive positive integers.

Solution :-

Let the first consecutive positive integer be x

and second consecutive positive integer be x + 1

According to the question,

\rm\:{x}^{2}+{(x+1)}^{2}=365

\rm\longrightarrow\:{x}^{2}+{x}^{2}+2x+1=365

\rm\longrightarrow\:2{x}^{2}+2x+1-365=0

\rm\longrightarrow\:2{x}^{2}+2x-364=0

\rm\longrightarrow\:2({x}^{2}+x-182)=0

\rm\longrightarrow\:{x}^{2}+x-182=0

\rm\longrightarrow\:{x}^{2}+14x-13x-182=0

\rm\longrightarrow\:x(x+14)-13(x+14)=0

\rm\longrightarrow\:(x+14)(x-13)=0

Now,

\rm\longrightarrow\:x+14=0

\rm\longrightarrow\:x=0-14

\rm\longrightarrow\:x=-14

Then,

\rm\longrightarrow\:x-13=0

\rm\longrightarrow\:x=0+13

\rm\longrightarrow\:x=13

Since,the integers are positive so, x will be 13

and

x + 1

13 + 1

14

Hence,the two consecutive positive integers will be 13 and 14.

Similar questions