Math, asked by reetpreetkhangura, 1 year ago

find two consecutive positive integers, sum of whose square is 365

Answers

Answered by bubupatra34
3
mark me as brainliest
Attachments:

reetpreetkhangura: tnx
bubupatra34: please mark it as brainly
Answered by Anonymous
3

\Large{\underline{\underline{\bf{Solution:-}}}}

{\rm{\bold{Let\: the \: consecutive\: positive\: Integers\: be \: x \: and \: x+1}}}

{\rm{ {x}^{2}  +  {x + 1}^{2}  = 365 }}

{\rm{{x}^{2}  +  {x}^{2}  + 1 + 2x = 365 }}

{\rm{  2{x}^{2}  + 2x - 364 = 0}}

{\rm{ {x}^{2}  + x - 182 = 0 }}

{\rm{ {x}^{2}  + 14x - 13x - 182 = 0 }}

{\rm{x(x + 14) - 13(x + 14) = 0 }}

{\rm{ (x  + 14)(x - 13) = 0}}

{\rm{ x =  - 14 \: or \: x = 13}}

{\underline{\underline{\bf{Integers\:are \: positive }}}}

\rm{So, \: x\: can \: be \: only \: 13}

\rm{x+1=13+1=14}

{\boxed{\boxed{\rm{First\: consecutive\: positive\: integer \: be \: 13}}}}

{\boxed{\boxed{\rm{Other\: consecutive\: positive\: integer \: be \: 14}}}}

Similar questions