Math, asked by ItzSecretBoy01, 1 day ago

Find two consecutive positive integers, sum of whose squares is 365.​

Answers

Answered by CᴀᴘᴛᴀìɴLᴇᴠí
100

Answer :

13 and 14.

Explaination :-

 \begin{gathered} \sf x {}^{2}  + (x + 1) {}^{2}  = 365 \\  \sf \implies \: x {}^{2}  + x {}^{2}  + 1 + 2x = 365  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \implies \:  x {}^{2}  + x – 182 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \implies x {}^{2} + 14x – 13x – 182 = 0  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \sf \implies x(x + 14) -13(x + 14) = 0 \\  \sf \implies(x + 14)(x – 13) = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \end{gathered}

Thus, either, x + 14 = 0 or x – 13 = 0

 \sf \implies x = – 14 \:  or x = 13

since, the integers are positive, so x can be 13, only.

 \sf \: ∴ x + 1 = 13 + 1 = 14

\boxed{\sf {\pink{Thus ,two \:  consecutive  \: positive \:  integers \:  will \:  be \:  13 \:  and  \: 14. }}}

Answered by XXurshadowXX
3

Answer:

13 and 14

Step-by-step explanation:

Let the two consecutive positive integers be x and x+1

Then,

x² +(x+1)² =365

⇒x² + x² +2x+1=365

⇒2x² +2x−364=0

⇒x² +x−182=0

Using the quadratic formula, we get

x=

 - 1 +  \sqrt{1 + 728} by \: 2

= -1 + 27

2

⇒x=13 and x=−14

But x is given to be a positive integer. ∴x not equal to −14.

Hence, the two consecutive positive integers are 13 and 14.

hope \:  \: it \:  \: helps \:  \: you

❥ɳαɳ∂เɳเ_~♪

Similar questions