Math, asked by mdlakshmi8, 9 days ago

Find two decimal numbers whose sum is 1 and product is 0.25. answer with steps​

Answers

Answered by ribhutripathi18116
1

Let the two numbers be x and y

According to the conditions of the question:

x + y = 1         ___(1)

(x) (y) = 0.25 ___(2)

✯ Squaring the first equation, we get:

⇒   (x+y)^{2} = 1

⇒  x^{2} +y^{2} +2xy = 1    ___(3)

✯ Putting the value of (x) (y)  in (3) from (2), we get:

⇒  x^{2} +y^{2} + 2 (0.25) = 1

⇒  x^{2} +y^{2} + 0.50 = 1

⇒  x^{2} +y^{2} = 0.50  ___(4)

✯Now, calculate (x-y)^{2}

⇒  (x-y)^{2} = x^{2} +y^{2} - 2xy

⇒  (x-y)^{2} =  0.50 - 2xy                { From (4) }

⇒  (x-y)^{2} = 0.50 - 2(0.25)

⇒  (x-y)^{2} = 0.50 - 0.50

⇒  (x-y)^{2} = 0

⇒  x - y = 0

⇒  x  = y  ____(5)

✯From (1) and (5),

⇒  2x = 1

⇒ x = \frac{1}{2}

⇒  y = \frac{1}{2}          { From (5) }

___________________________________________________

✯ So, the two numbers are 0.5 and 0.5

Similar questions