Math, asked by Sinead, 9 months ago


Find two integers whose sum is 7 and product is 12

Answers

Answered by Vamprixussa
37

Let the 2 integers be x and y.

Given

Sum of 2 integers = 7

\implies x + y = 7

Product of 2 integers = 12

\implies xy=12

Solving, we get,

y = 7-x\\\implies x(7-x) = 12\\\implies -x^{2} +7x-12=0\\\implies x^{2} -7x+12=0\\\implies x^{2} -4x-3x+12=0\\\implies x(x-4)-3(x-4)=0\\\implies (x-3)(x-4)=0

When x = 3, y = 4

When x = 4, y = 3

                                                       


Anonymous: Well Explained ✨
Answered by ItzMysticalBoy
32

Question :-

  • Find two integers whose sum is 7 and product is 12 .

Solution :-

Given :

  • Sum = 7
  • Product = 12

To Find :

  • The two integers.

Let the two integers be x and y.

\tt{Sum\:of\:the\:two\:integers=7} \\ \tt{\longrightarrow{x + y} = 7 }\\ \tt {\longrightarrow{y = 7 - x \:  \: \:  \:  \:  \:  \: ...(i)}}

\tt{Product \:  of  \: the  \: two \:  integer = 12} \\ \tt{ \longrightarrow {xy = 12}}

By Putting Value of equation (i) :

 \sf{ \implies{x \times y = 12}} \\  \\ \sf{ \implies{x \times (7 - x)= 12}}  \\ \\  \sf{ \implies{7x -  {x}^{2} = 12 }} \\   \\ \sf{ \implies{{- x}^{2} + 7x - 12=0}}  \\ \\  \sf{ \implies{{x}^{2} -7x +12=0}} \\  \\ \sf{ \implies{{x}^{2}-4x-3x+12=0}}\\ \\\sf{ \implies{x (x-4)-3 (x-4)=0}}\\ \\\sf{ \implies{(x-4)(x-3)=0}}\\ \\ \sf{ \implies{x=4 \: or\: x=3}}

  • When x = 4 , other integer = 7-4 =3
  • When x = 3 , other integer = 7-3=4

\bf{\therefore {The\:integers\:are\:3 \:and\:4.}}

\rule {307}{2}

Similar questions