Math, asked by Rangg56051, 8 months ago

Find two numbers in the ratio of 8:7 such that when each is decreased by 12 1/2 they are in ratio 11:9

Answers

Answered by Anonymous
24

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Two numbers in the ratio of 8:7

 \:\:

  • When each is decreased by 12  \rm \dfrac { 1} { 2 } they are in ratio 11:9

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • The two numbers

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the numbers be 8x & 7x

 \:\:

 \underline{\bold{\texttt{Decreased numbers :}}}

 \:\:

 \sf \longmapsto 8x - 12 \dfrac { 1 } { 2 }

 \:\:

 \: \: \: \: \: \: \: \: \: \: \: \&

 \:\:

 \sf \longmapsto 7x - 12 \dfrac { 1 } { 2 }

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

When each is decreased by 12  \rm \dfrac { 1} { 2 } they are in ratio 11:9

 \:\:

 \sf \longmapsto \dfrac { 8x - 12 \dfrac { 1 } { 2 } } { 7x - 12 \dfrac { 1 } { 2 } } = \dfrac { 11 } { 9 }

 \:\:

 \sf \longmapsto \dfrac { 8x - \dfrac { 25 } { 2 } } { 7x - \dfrac { 25 } { 2 } } = \dfrac { 11 } { 9 }

 \:\:

 \sf \longmapsto \dfrac { \dfrac { 16x - 25 } { 2 } } { \dfrac { 14x - 25 } { 2 } } = \dfrac { 11 } { 9 }

 \:\:

 \sf \longmapsto \dfrac { 16x - 25 } { 14x - 25 } = \dfrac { 11 } { 9 }

 \:\:

 \sf \longmapsto 154x - 275 = 144x - 225

 \:\:

 \sf \longmapsto 154x - 144x = 275 - 225

 \:\:

 \sf \longmapsto 10x = 50

 \:\:

 \sf \longmapsto x = \dfrac { 50 } { 10 }

 \:\:

 \bf \dashrightarrow x = 5

 \:\:

 \underline{\bold{\texttt{Hence the numbers will be,}}}

 \:\:

  • 8x = 8(5) = 40

 \:\:

  • 7x = 7(5) = 35

 \:\:

Hence the numbers are 40 & 35

\rule{200}5

Answered by sunitameena45647
2

Answer:

ur num. is 40and 35 ...........

Similar questions