Find two numbers whose Arithmetic mean exceeds the geometric mean by 2 and whose harmonic mean is one fifth of the larger number
Answers
Answered by
1
Solution :-
Let the bigger number be 'x' and the smaller number be 'y'.
Arithmetic Mean = Geometric Mean + 2
Arithmetic Mean of x and y = (x + y)/2
Geometric Mean = √xy + 2
⇒ x + y = 2√xy + 2
⇒ x + y = 2√xy + 4 .........(1)
Harmonic mean = x/5 (Given)
⇒ 2xy/x + y = x/5
⇒ 2y*5 = x + y
⇒ 10y = x + y
⇒ 10y - y = x
⇒ x = 9y ...........(2)
substituting (2) in (1)
⇒ 9y + y = 2√xy + 4
⇒ 10y = 2√9y*y + 4
⇒ 10y = 2√9y² + 4
⇒ 10y = 2*3y + 4
⇒ 10y = 6y + 4
⇒ 10y - 6y = 4
⇒ 4y = 4
⇒ y = 4/4
⇒ y = 1
Substituting y = 1 in (2)
x = 9y
x = 9*1
x = 9
So, two numbers are 9 and 1
Answer.
Let the bigger number be 'x' and the smaller number be 'y'.
Arithmetic Mean = Geometric Mean + 2
Arithmetic Mean of x and y = (x + y)/2
Geometric Mean = √xy + 2
⇒ x + y = 2√xy + 2
⇒ x + y = 2√xy + 4 .........(1)
Harmonic mean = x/5 (Given)
⇒ 2xy/x + y = x/5
⇒ 2y*5 = x + y
⇒ 10y = x + y
⇒ 10y - y = x
⇒ x = 9y ...........(2)
substituting (2) in (1)
⇒ 9y + y = 2√xy + 4
⇒ 10y = 2√9y*y + 4
⇒ 10y = 2√9y² + 4
⇒ 10y = 2*3y + 4
⇒ 10y = 6y + 4
⇒ 10y - 6y = 4
⇒ 4y = 4
⇒ y = 4/4
⇒ y = 1
Substituting y = 1 in (2)
x = 9y
x = 9*1
x = 9
So, two numbers are 9 and 1
Answer.
Similar questions