Math, asked by tc3102, 3 months ago

Find two numbers whose product is -182 and sum is +1.

Answers

Answered by harshitha202034
0

Answer:

14 and -13

Step-by-step explanation:

xy =  - 182 \\ x =  \frac{ - 182}{y}  \\  \\ x + y = 1 \\  \frac{ - 182}{y}  + y = 1 \\  \frac{ - 182 +  {y}^{2} }{y}  = 1 \\  - 182 +  {y}^{2}  = 1y \\  {y}^{2}  - 182 - y = 0 \\  {y}^{2}  - y - 182 = 0 \\  {y}^{2}  - 14y+ 13y - 182 = 0 \\ y(y - 14) + 13(y - 14) = 0 \\ y - 14 = 0 \:  \:  \: or \:  \:  \: y + 13 = 0 \\  \boxed{y =  \underline{ \underline{ \bf14}} \:  \:  \: or \:  \:  \: y = \underline{ \underline{ \bf - 13}}} \\  \\ The  \:  \: two  \:  \: numbers \:  \:  are :  \\  {\bf14 } \:  \: and \:  \: { \bf -13} \\  \\ x + y = 1 \\ 14 + ( - 13) = 1 \\ 14 - 13 = 1 \\ 1 = 1 \\  \\ xy =  - 182 \\ 14 \times ( - 13) = 182 \\  - 182 =  - 182

Similar questions