Math, asked by Nishchal303, 10 months ago

Find two numbers whose sum is 27 and product is 182 please help class 10 maths

Answers

Answered by Anonymous
11

Your Answer:

Given:-

  • Sum of numbers = 27
  • Product of numbers = 182

To Find:-

  • The numbers

Solution:-

Let the numbers be x and y

ATQ,

\tt x + y = 27 \rightarrow \rightarrow\rightarrow \rightarrow(1)

and

\tt x  y  = 182\rightarrow \rightarrow\rightarrow \rightarrow(2)

From eq.(1)

\tt x = 27 - y \rightarrow \rightarrow \rightarrow \rightarrow (3)

Putting value of x from eq(1) into eq(2)

\tt (27-y)y = 182 \\\\ \tt \Rightarrow 27y - y^2 = 182 \\\\ Multiplying \ \ with \ \ (-1) \ \ both \ \ sides \\\\ \tt \Rightarrow y^2 -27y = -182 \\\\ \tt \Rightarrow y^2 - 27y +182 = 0 \\\\ \tt \Rightarrow y^2 - 13y - 14y +182 = 0 \\\\ \tt \Rightarrow y(y-13) - 14(y -13) = 0 \\\\ \tt \Rightarrow (y-14)(y-13) = 0 \\\\ \tt Equating \ \ the \ \ factors \ \ with \ \ zero

\tt \star First \ \ Equating \ \ (y-14) \ \ with \ \ 0 \\\\ y - 14 = 0 \\\\ \tt \Rightarrow y =14 \\\\ \tt \star Second \ \ Equating \ \ (y-13) \ \ with \ \ 0 \\\\ y - 13 = 0 \\\\ \tt \Rightarrow y =13

So, for the first case y = 14

then x = 13

And for the second case y = 13

then x = 14

So, the numbers are 13 and 14

Answered by Vamprixussa
16

Let the two numbers be x and y.

Given

Sum of the 2 numbers is 27

\implies x+y=27\\\implies x = 27-y--(1)

Product of the two numbers is 182

\implies xy=182

\implies y(27-y)=182

\implies -y^{2} +27y=182\\\implies y^{2} -27y+182=0\\\implies y^{2}-14y-13y+182=0\\\implies y(y-14)-13(y-14)=0\\\implies (y-14)(y-13)=0

If y = 14, x = 13

If x = 13, y = 14

\boxed{\boxed{\bold{Therefore, \ the \ numbers \ are \ 13 \ and \ 14}}}}}}}}}

                                                                           

Similar questions