Math, asked by jmahek30, 9 months ago

find unit vector (2i^+3j^+4k) × (5i^+ 6j^+7k^)​

Answers

Answered by BrainlyPopularman
8

GIVEN :

 \\  \bf \:  \implies \: (2 \hat{i} + 3 \hat{j} + 4 \hat{k}) \times (5 \hat{i} + 6 \hat{j} + 7 \hat{k}) \\

TO FIND :

• Unit vector = ?

SOLUTION :

 \\  \bf \: \vec{A}= \: (2 \hat{i} + 3 \hat{j} + 4 \hat{k}) \times (5 \hat{i} + 6 \hat{j} + 7 \hat{k}) \\

• We should write this as –

 \\  \bf \: \vec{A}= \left|\begin{array}{ccc}\bf \hat{i} & \bf \hat{j} &  \bf\hat{k} \\ \\  \bf2 & \bf3& \bf4 \\  \\ \bf5& \bf6& \bf7\end{array}\right| \\

 \\  \bf \: \vec{A}= \hat{i}\left|\begin{array}{cc}\bf \bf3& \bf4 \\  \\ \bf6& \bf7\end{array}\right|  - \hat{j}\left|\begin{array}{cc}\bf \bf2& \bf4 \\  \\ \bf5& \bf7\end{array}\right| +  \hat{k}\left|\begin{array}{cc}\bf \bf2& \bf3 \\  \\ \bf5& \bf6\end{array}\right| \\

 \\  \bf \: \vec{A}= \hat{i}(21 - 24)- \hat{j}(14 - 20) +  \hat{k}(12 - 15) \\

 \\  \bf \: \vec{A}= \hat{i}( - 3)- \hat{j}( - 6) +  \hat{k}( - 3) \\

 \\  \bf \: \vec{A}= - 3 \hat{i} + 6 \hat{j} - 3 \hat{k}\\

• Unit vector –

 \\   \implies\bf \: \hat{A}=  \dfrac{ \vec{A}}{ |A| } \\

• Here –

 \\ \:\: {\huge{.}}\bf \:\: \hat{A}= Unit\:\: vector \\

 \\ \:\: {\huge{.}}\bf \:\: \vec{A}=  vector \\

 \\ \:\: {\huge{.}}\bf \:\:|A|= Magnitude \\

 \\  \implies \bf  \hat{A}= \dfrac{ - 3 \hat{i} + 6 \hat{j} - 3 \hat{k}}{ \sqrt{ {( - 3)}^{2}  +  {(6)}^{2}  +  {( - 3)}^{2} } }\\

 \\  \implies \bf  \hat{A}= \dfrac{ - 3 \hat{i} + 6 \hat{j} - 3 \hat{k}}{ \sqrt{9 + 36 + 9} }\\

 \\  \implies \bf  \hat{A}= \dfrac{ - 3 \hat{i} + 6 \hat{j} - 3 \hat{k}}{ \sqrt{54} }\\

 \\  \implies \bf  \hat{A}= \dfrac{ - 3 \hat{i} + 6 \hat{j} - 3 \hat{k}}{ 3\sqrt{6} }\\

 \\  \implies \large{ \boxed{ \bf  \hat{A}= \dfrac{ -  \hat{i} + 2 \hat{j} - \hat{k}}{\sqrt{6}}} }\\

Similar questions