Physics, asked by hemanandyini4571, 8 months ago

Find unit vector of 4i-3j+k

Answers

Answered by sachinyadav10
17

Answer:

Simple Just see the explanation ;

Explanation:

Unit Vector =

 \frac{a \: vector}{ |a| }

 |a|  =  \sqrt{ {a}^{2}  +  {b}^{2}  +  {c}^{2}   }

Unit Vector = 4i-3j-k / √26

Answered by nirman95
0

Unit vector of 4i - 3j + k

Let the vector be :

 \vec{r} = 4 \hat{i}  - 3 \hat{j} + k

Now, the general expression for unit vector will be:

 \hat{r} =  \dfrac{ \vec{r}}{ | \vec{r}| }

  \implies \hat{r} =  \dfrac{ 4 \hat{i} - 3 \hat{j} +  \hat{k}}{ \sqrt{ {4}^{2}  +  {( - 3)}^{2} +  {1}^{2}  } }

  \implies \hat{r} =  \dfrac{ 4 \hat{i} - 3 \hat{j} +  \hat{k}}{ \sqrt{16 + 9 + 1 } }

  \implies \hat{r} =  \dfrac{ 4 \hat{i} - 3 \hat{j} +  \hat{k}}{ \sqrt{26} }

So, final answer is :

The unit vector is \dfrac{ 4 \hat{i} - 3 \hat{j} +  \hat{k}}{ \sqrt{26} }

Similar questions