Math, asked by nanda228, 2 months ago

Find using elementary the inverse of A = 1 0 0 3 3 0 5 2 -1​

Answers

Answered by royalsubham462rajput
0

Answer:

I THINK IT IS VERY DIFFICULT TO SAY FOR ME.

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given matrix,

\begin{gathered}\sf A=\left[\begin{array}{ccc}1&0&0\\3&3&0\\5&2& - 1\end{array}\right]\end{gathered}

We know,

\red{\bf :\longmapsto\:A = IA}

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\3&3&0\\5&2& - 1\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]\end{gathered}

\red{\rm :\longmapsto\:OP \: R_2 \:\to \:  R_2 \:  - 3R_1}

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0&3&0\\5&2& - 1\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\ - 3&1&0\\0&0&1\end{array}\right]\end{gathered}

\red{\rm :\longmapsto\:OP \: R_3 \:\to \:  R_3 \:  - 5R_1}

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0&3&0\\0&2& - 1\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\ - 3&1&0\\ - 5&0&1\end{array}\right]\end{gathered}

\red{\rm :\longmapsto\:OP \: R_2 \:\to \:  R_2 \:  - R_3}

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0&1&1\\0&2& - 1\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\  2&1& - 1\\ - 5&0&1\end{array}\right]\end{gathered}A

\red{\rm :\longmapsto\:OP \: R_3 \:\to \:  R_3  \:  - 2R_2}

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0&1&1\\0&0& - 3\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\ 2&1& - 1\\ - 9& - 2&3\end{array}\right]\end{gathered}A

\red{\rm :\longmapsto\:OP \: R_3 \: \to \:  -  \: \dfrac{1}{3} \: R_3}

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0&1&1\\0&0&1\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\ 2&1& - 1\\3&  \dfrac{2}{3} & - 1\end{array}\right]\end{gathered}A

\red{\rm :\longmapsto\:OP \: R_2 \:\to \:  R_2 \:  - R_3}

\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]\end{gathered} = \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\- 1& \dfrac{1}{3} &0 \\3&  \dfrac{2}{3} & - 1\end{array}\right]\end{gathered}A

\bf\implies \:A {A}^{ - 1}  = I

Hence,

\bf\implies \: {A}^{ - 1}  = \begin{gathered}\sf\left[\begin{array}{ccc}1&0&0\\- 1& \dfrac{1}{3} &0 \\3&  \dfrac{2}{3} & - 1\end{array}\right]\end{gathered}

Similar questions