Math, asked by kumaranil49543, 9 months ago

find using identity (2x+1)^3​

Answers

Answered by tanya4497
0

Answer:

Identity: (a+b)^3 = a^3+b^3+3ab( a+b)

(2x)^3 + (1)^3 + 3*2x*1(2x +1)

8x^3 +1+ 6x(2x+1)

8x^3 +1+12x^2 + 6x

ur answer is 8x^3+1+12x^2+6x

Answered by Anonymous
75

\large{\underline{\underline{\mathfrak{\green{\sf{Answer:-}}}}}}.

\large{\underline{\underline{\mathfrak{\green{\sf{Find\:Here:-}}}}}}.

\red{\:Value\:of\:(2x+1)^3}.

\large{\underline{\underline{\mathfrak{\pink{\sf{Explanation:-}}}}}}.

We know that ,

\red{\:(a+b)^3\:=\:(a^3+b^3+3a^2b+3ab^2)}.

Usnig this identity

\implies\:(2x+1)^3.

\implies\:[(2x)^3+1^3+3*(2x)^2(1)+3*(2x)*(1)^2].

\implies\:[8x^3+1+12x^2+6x].

\implies\:[8x^3+12x^2+6x+1].

_____________

Similar questions