Math, asked by sudsarkar13p6per0, 3 months ago

find using permutation and combination​

Attachments:

Answers

Answered by Anonymous
25

Question :-

Find the value of n using permutation and combination -

\sf ^nP_4 : ^{n-1}P_3 = 9 : 1

Answer :-

We know that,

\implies\sf ^nP_r = \dfrac{n!}{(n-r)!}

So,

\implies\sf ^nP_4 : ^{n-1}P_3 = 9 : 1

\implies\sf \dfrac{^nP_4}{ ^{n-1}P_3} = \dfrac{9}{1}

\implies\sf \dfrac{\dfrac{n!}{(n-4)!}}{\dfrac{(n-1)!}{(n-1-3)!}} = 9

\implies\sf \dfrac{\dfrac{n!}{\cancel{(n-4)!}}}{\dfrac{(n-1)!}{\cancel{(n-4)!}}} = 9

\implies\sf \dfrac{n!}{(n-1)!} = 9

\implies\sf \dfrac{n \times \cancel{(n-1)!}}{\cancel{(n-1)!}} = 9

\implies\boxed{\sf n = 9}

Verification :-

\sf LHS = \dfrac{^nP_4}{ ^{n-1}P_3}

\sf = \dfrac{^9P_4}{ ^{9-1}P_3}

\sf = \dfrac{^9P_4}{ ^{8}P_3}

\sf = \dfrac{\dfrac{9!}{(9-4)!}}{\dfrac{(9-1)!}{(9-1-3)!}}

\sf = \dfrac{\dfrac{9!}{\cancel{(5)!}}}{\dfrac{8!}{\cancel{(5)!}}}

\sf = \dfrac{9!}{8!}

\sf = 9

\sf RHS = 9

LHS = RHS

Hence, verified.

Similar questions