Music, asked by ashvan, 1 year ago

find value of [119]²+[119][111]+[111]²/[119]³-[111]³

Answers

Answered by abhi178
232
Let 119 = a and 111 = b

then, \frac{119^2+119.111+111^2}{119^3-111^3}=\frac{a^2+ab+b^2}{a^3-b^3}
we know,
a³ - b³ = (a - b)(a² + ab + b²) use this here,

\frac{a^2+ab+b^2}{a^3-b^3}=\frac{a^2+ab+b^2}{(a-b)(a^2+ab+b^2)} \\ \\ = \frac{1}{(a - b)} \\ \\ = \frac{1}{119 - 111} \\ \\ = \frac{1}{8}
Answered by AR17
143
Heya folk !!

Here's the answer you are looking for.

 \frac{ {(119)}^{2} + (119)(111) + {(111)}^{2} }{ {(119)}^{3} - {(111)}^{3} }


Multiply, (119 - 111) to both numerator and denominator, so we get,

 \frac{ {[(119)}^{2} + (119)(111) + {(111)}^{2}] (119 - 111)}{ [{(119)}^{3} - {(111)}^{3}] (119 - 111) }


The numerator is in the form of
(a - b)(a² + ab + b²) = a³ - b³

So, it becomes,

 \frac{ [{119}^{3} - {111}^{3}] }{[{119}^{3} - {111}^{3}](119 - 111)} \\ \\ = \frac{1}{(119 - 111)} \\ \\ = \frac{1}{8} (ans)

★★ HOPE THAT HELPS ☺️ ★★
Similar questions