Math, asked by Lankaaa, 7 months ago

find value of 4cos20-√3cot20​

Answers

Answered by babyrani0220
0

Answer:

Here is your answer mate

Step-by-step explanation:

L.H.S=

sin20

1

(4cos20

sin20

3

cos20

)

L.H.S=

sin20

2

(sin40

2

3

cos20

)

L.H.S=

sin20

1

(2sin40

−2sin60

cos20

)

L.H.S=

sin20

1

[(2sin40

−(sin80

+sin40

)]

L.H.S=

sin20

1

[sin40

−sin80

]

L.H.S=

sin20

1

[2sin(−20

)cos60

]=−1

Answered by Anonymous
12

\;\;\underline{\textbf{\textsf{ Given:-}}}

\sf{4 cos20^\circ-\sqrt{3}cot20^\circ }

\;\;\underline{\textbf{\textsf{ To Find :-}}}

• Value of \sf{4 cos20^\circ-\sqrt{3}cot20^\circ }

\;\;\underline{\textbf{\textsf{ Solution :-}}}

Given that,

\sf{4 cos20^\circ-\sqrt{3}cot20^\circ }

\sf{=  4cos20^\circ-\sqrt{3}\dfrac{cos20^\circ}{sin20^\circ}  }\\\\\sf{=  \dfrac{4cos20^\circ.sin20^\circ-\sqrt{3}cos20^\circ }{sin20^\circ} }\\\\\sf{=  \dfrac{2sin40^\circ-2.\frac{\sqrt{3}}{2}cos20^\circ }{sin20^\circ} }\\\\\sf{=  \dfrac{2sin40^\circ-2.sin60^\circ.cos20^\circ}{sin20^\circ} }\\\\\sf{=  \dfrac{2sin40^\circ-(sin80^\circ+sin40^\circ)}{sin20^\circ} }\\\\\sf{=  \dfrac{sin40^\circ-sin80^\circ}{sin20^\circ} }\\\\\sf{=  \dfrac{2cos60^\circ.sin(-20^\circ)}{sin20^\circ} }\\\\\sf{=-1}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions