Math, asked by bhosdike71, 8 months ago

find value of 8ab(a^2+b^2) when (a+b) = ✓11 and (a-b) =✓7.​

Answers

Answered by Anonymous
1

Answer:

 <html> <head> <meta name="viewport" content="width=device-width, initial-scale=1"> <style> Body{ background-color: white; font-family: cursive; } .glow{ font-size: 80px; color: #fff; text-align: center; -webkit-animation: glow 1s ease-in-out infinite alternate; -moz-animation: glow 1s ease-in-out infinite alternate; animation: glow 1s ease-in-out infinite alternate; } @-webkit-keyframes glow{ from{ text-shadow: 0 0 10px #fff, 0 0 20px #fff, 0 0 30px #e60073, 0 0 40px #e60073, 0 0 50px #e60073, 0 0 60px #e60073, 0 0 70px #e60073; } } </style> </head> <body> <h1 class="glow">hello</h1> </body> </html>

8ab( {a}^{2}  +  {b}^{2} )

use the identity of (a²-b²)

 <marquee behaviour-move><font color="red"><h2>#FrIeNdShIp </ ht></ marquee>

Answered by kavyansh1309
1

(a+b)²-(a-b)²=(√11)²-(√7)²

[(a+b)+(a-b)][(a+b)-(a-b)]=(11-7) ...[by identity (a²-b²)]

(a+b+a-b)(a+b-a+b)=4

(2a)(2b)=4

4ab=4

ab=4

Now,

8ab(a²+b²)

=4ab(2a²+2b²)

=4×4(2a²+2b²+2ab-2ab)

=16[(a²+b²+2ab)+(a²+b²-2ab)]

=16[(a+b)²+(a-b)²]

=16[(√11)²+(√7)²]

=16(11+7)

=16×18

=304

Similar questions