Math, asked by avi4017, 18 hours ago

find value of a^3+27b^3 , if a-2b = -6 and ab=-10 ​

Answers

Answered by chakrausha2
3

Answer:

324

Step-by-step explanation:

a−3b=−6

Squaring both sides,

=>(a−3b)2=−62

=>a2+9b2−2(a)(3b)=36

=>a2+9b2−6(ab)=36

=>a2+9b2−6(−10)=36

=>a2+9b2=36−60

=>a2+9b2=−24

Now,

a3−(3b)3=(a−3b)[(a)2+(3b)2+(a)(3b)]

a3−27b3=−6(−24+3(−10))

                   =−6(−24−30)

                    =324

Answered by swethassynergy
5

Correct Question

Find value of a^{3} +27b^{3} , if a-3b=-6   and ab=-10

Answer:

The value of a^{3} +27b^{3} is 324.

Step-by-step explanation:

Given:

a-3b=-6

ab=-10

To Find:

The value of a^{3} +27b^{3}.

Formula Used:

(x-y)^{3} =x^{2} +x^{2} -3xy(x-y)

Solution:

As given- a-3b=-6   and ab=-10.

Applying formula no.01.

(x-y)^{3} =x^{3} +y^{3} -3xy(x-y)

Putting x=a  and y=3(a-3b)^{3} =a^{3} +(3b)^{3} -3\times a\times 3b(a-3b)b in  above formula.

(a-3b)^{3} =a^{3} +(3b)^{3} -3\times a\times 3b(a-3b)

(a-3b)^{3} =a^{3} +27b^{3} -9ab(a-3b)

Putting the value of  a-3b=-6   and ab=-10.

(-6)^{3} =a^{3} +27b^{3} -9(-10)(-6)

-216=a^{3} +27b^{3} -540

a^{3} +27b^{3}= 540-216

a^{3} +27b^{3}= 324

Thus, the value of  a^{3} +27b^{3}  is 324.

PROJECT CODE#SPJ2

Similar questions