Find value of a and b √7-1/√7+1=a+b√7
Answers
Step-by-step explanation:
\sf\orange{ ★ Answer ★ }★Answer★
multiplicative inverse of 5
➳ \tt \frac{1}{5}➳
5
1
Proof -
\tt \frac{5}{1}
1
5
× \tt \frac{1}{5}
5
1
= 1
__________________________________________
\sf\blue{ Let's \: understand \: it :- }Let
′
sunderstandit:−
For every non - zero rational number \tt \frac{a}{b}
b
a
there exist a rational number \tt \frac{b}{a}
a
b
such that \tt \frac{a}{b}
b
a
× \tt \frac{b}{a}
a
b
= \tt \frac{b}{a}
a
b
× \tt \frac{a}{b}
b
a
= 1 ,
★ \tt \frac{b}{a}
a
b
is called the reciprocal or multiplicative inverse of \tt \frac{a}{b}
b
a
★ \tt \frac{a}{b}
b
a
is called the reciprocal or multiplicative inverse of \tt \frac{b}{a}
a
b
\sf\red{ EXAMPLE :- }EXAMPLE:−
multiplicative inverse of \tt \frac{3}{4}
4
3
➳ \tt \frac{4}{3}
3
4