Math, asked by armanjot, 1 year ago


Find value of a and b


Attachments:

Answers

Answered by TheKingOfKings
4

 \frac{ \sqrt{7 }  - 3}{ \sqrt{7}  + 3}  = a \sqrt{7}  + b \\  \\   \frac{7 - 6 \sqrt{7} + 9 }{4}    \\  \\   \frac{16 - 16 \sqrt{7} }{4}  \\  \\  - 4 \sqrt{7}  + 4 \\   \\ a \:  =  - 4 \\  \\ b \:  = 4

Answered by UltimateMasTerMind
2

Solution:-

Given:-

 \frac{ \sqrt{7} - 3 }{ \sqrt{7} + 3 }  = a \sqrt{7}  + b

To Find :-

Value of a and b = ?

Find:-

\frac{ \sqrt{7} - 3 }{ \sqrt{7} + 3 }

Multiplying on Numerator and Denominator by ( √7 - 3).

\frac{ \sqrt{7} - 3 }{ \sqrt{7} + 3 }  \times  \frac{ \sqrt{7} - 3 }{ \sqrt{7}  - 3}  \\  \\  \frac{ {( \sqrt{7} - 3) }^{2}  }{( \sqrt{7}  + 3)( \sqrt{7}  - 3)}  \\  \\  \frac{ { \sqrt{7} }^{2} +  {3}^{2}  - 2 \times  \sqrt{7}  \times 3 }{ { \sqrt{7} }^{2}  -  {3}^{2} }  \\  \\  \frac{7 + 9 - 6 \sqrt{7} }{7 - 9}  \\  \\  \frac{16 - 6 \sqrt{7} }{ - 2}  \\  \\  - 8 + 3 \sqrt{7}

According to the Given Information.

( √7 - 3)/(√7 + 3) = a√7 + b

=) 3√7 - 8 = a√7 + b

Hence,

a = 3.

And b = -8.

Similar questions