find value of a and b if 3+3root2/3-3root2 = a+b root 2. step by step. explanation needed
Answers
Solution :-
(3 + 3√2)/(3 - 3√2) = a + b√2
Consider LHS
(3 + 3√2)/(3 - 3√2)
Rationalise the denominator i.e multiply both numerator and denominator with (3 + 3√2)
= (3 + 3√2)/(3 - 3√2) × (3 + 3√2)/(3 + 3√2)
= {(3 + 3√2) × (3 + 3√2)}/{(3 - 3√2) × (3 + 3√2)}
= (3 + 3√2)²/{3² - (3√2)²}
Since (x + y)(x - y) = x² - y²
= {3² + (3√2)² + 2(3)(3√2)}/{9 - 9(2)}
Since (a + b)² = a² + b² + 2ab
= {9 + 9(2) + 18√2}/(9 - 18)
= {9 + 18 + 18√2)/(-9)
= (27 + 18√2)/(-9)
= (27/-9) + (18√2/-9)
= (3/-1) + (2√2/-1)
= - 3 + (-2√2)
= - 3 - 2√2
i.e, - 3 - 2√2 = a + b√2
Comparing on both sides
We get, a = - 3
b√2 = - 2√2
b = - 2
Therefore the values of a and b are - 3 and - 2 respectively.
Answer:
L.H.S :
= (3 + 3√2) / (3 - 3√2)
Now , (3 + 3√2) multiply with it numerator and denominator.
= (3+3√2)/(3-3√2) × (3+3√2)/(3+3√2)
= {(3+3√2) × (3+3√2)}/ {(3-3√2) × (3+3√2)}
= (3+3√2)^2 / {3^2 - (3√2^2)}
= (x+y)(x-y) = x^2 - y^2
= {3^2 + (3√2)^2 + 2(3)(3√2)}/{9-9(2)}.
By using formula :
(a+b)^2 = a^2 + b^2 + 2ab.
= {9+9(2) + 18√2}/(9-18).
= {9+18+18√2)/(-9).
= (27+18√2)/(-9).
= (27/-9)+(18√2/-9)
= (3/-1)+2√2/-1)
= -3 + (-2√2)
= -3-2√2
= -3-2√2 = a+b√2
The both sides comparing:
a = -3
b√2 = -2√2
b= -2
The values are :
a = -3.
b= -2.